K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(P=\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}\ge\frac{\left(a^2+b^2\right)^2}{2ab}\ge\frac{\left(a+b\right)^4}{8ab}\ge\frac{\left(a+b\right)^4}{2\left(a+b\right)^2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

27 tháng 10 2019

dap an bag 4

10 tháng 3 2016

bằng a+b a' bạn 

4 tháng 8 2017

Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.

A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)

suy ra A>=4.

Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b

18 tháng 12 2017

Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b

k cho mk nha $_$

26 tháng 3 2017

Chọn C

NV
25 tháng 3 2022

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

19 tháng 5 2022

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2