K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

\(D=\left(2x+1\right)\left(4-x\right)\left(4-x\right)\le\left(\frac{2x+1+4-x+4-x}{3}\right)^3=27\)

Dấu "=" \(\Leftrightarrow2x+1=4-x\Leftrightarrow x=1\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)

\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)

Dấu '=' xảy ra khi 2x-4=0

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2

b) Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)

\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x+2=0

hay x=-2

Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

14 tháng 7 2018

Ta có: \(B=\frac{x^4+1}{x^4+2x^2+1}=\frac{x^4+2x^2+1-2x^2-2+2}{x^4+2x^2+1}\)

\(=\frac{\left(x^2+1\right)^2-2\left(x^2+1\right)+2}{\left(x^2+1\right)^2}=1-\frac{2\left(x^2+1\right)}{\left(x^2+1\right)^2}+\frac{2}{\left(x^2+1\right)^2}\)

\(=1+2\left[\frac{1}{\left(x^2+1\right)^2}-2\cdot\frac{1}{x^2+1}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right]\)

\(=1+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\)

Vì \(2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge0\Rightarrow B=\frac{1}{2}+2\left(\frac{1}{x^2+1}-\frac{1}{2}\right)^2\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x^2+1}-\frac{1}{2}=0\Leftrightarrow\frac{1}{x^2+1}=\frac{1}{2}\Leftrightarrow x^2+1=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy \(Bmin=\frac{1}{2}\Leftrightarrow x=\pm1\)

14 tháng 8 2017

UI CAU HOI NAY MINH CUNG GAP NHUNG KO BIET

27 tháng 2 2019

Câu hỏi của Nguyễn Thảo Nguyên - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)