Cho tam giác abc kẻ BH vuông góc với AC( H thuộc AC) ; CK vuông góc AB( K thuộc AB) . biết bh = ck . Chứng minh tam giác ABC cân
cho tam giác ABC, gọi M, N lần lượt là trung điểm của các cạnh AB, AC. biết CM = BN. chứng minh tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông BKC và tam giác vuông CHB có:
CK = BH (gt)
BC chung
=> Tam giác vuông BKC = Tam giác vuông CHB (ch - cgv)
=> ^B = ^C (2 góc tương ứng)
Xét tam giác ABC: ^B = ^C (cmt)
=> Tam giác ABC cân tại A
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Ta có: ΔABC cân tại A
=> Góc B = góc C
=> AB = AC
Xét 2 ΔKBC và ΔHCB có
Góc B = góc C
BC chung
Góc BKC = góc BHC = 90o
=> ΔKBC = ΔHCB (c - g - c)
=> BK = HC
Mà AB = AC (cmt)
=> AK = AH (dpcm)