Chứng minh rằng: Tổng của n số nguyên lẻ liên tiếp chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
Tổng của n số lẻ liên tiếp là:
1+3+…+a
Tổng trên có số số là:
(a-1):2+1=n
=>(a-1):2=n-1
=>a-1=2.(n-1)
=>a-1=2n-2
=>a=2n-2+1
=>a=2n-1
Tổng của n số lẻ liên tiếp là:
1+3+…+(2n-1)
=[(2n-1)+1].n:2
=2n.n:2
=n2 chia hết cho n
Vậy tổng của n số lẻ liên tiếp chia hết cho n
các bạn có thể cho mình biết được không,đang cần gấp lắm.
Thật buồn cho bạn, đến năm 2020 rồi mà vẫn không có người trả lời. Mình cũng định trả lời nhưng có lẽ nó không cần nữa rồi. Mình rất xin lỗi vì bây giờ mình mới nhìn thấy câu hỏi của bạn. Thôi thì lỡ rồi, mình chỉ nói vậy coi như an ủi phần nào cho tâm hồn mỏng manh đã bị tổn thương sâu sắc của bạn. Chân thành xin lỗi.
Theo đề bài, gọi N số lẻ liên tiếp là :
m, m+2, m+4, .....m + (n-1).2
-> Tổng của N số lẻ liên tiếp :
m + (m+2) + (m+4) + .... + [m+(n-1).2] (n số hạng)
= m+m+2+m+4+....+m+n-1.2 = (m+m+m...+m) + [2+4+...+(n-1).2]
= m.n+2.(1+2+...+n+1)
= m.n+2.(n-1).(n-1+1) : 2
= m.n+(n-1).n
= (m+n-1).n \(⋮\)N
=> Tổng của N STN liên tiếp chia hết cho N, nếu N lẻ
Bạn vào theo link này nhé : https://olm.vn/hoi-dap/detail/17567331425.html
Hok tốt !