K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

13 tháng 4 2022

thì đừng trả lời

 

24 tháng 3 2015

 Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

 

24 tháng 3 2015

Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

20 tháng 12 2015

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

Tick nha

20 tháng 12 2015

tick nhé:http://olm.vn/hoi-dap/question/61032.html

12 tháng 2 2016

Trong câu hỏi tương tự có rất nhiều bài giải về câu hỏi này . Bạn có thể tham khảo các cách giải trong đó nha .

12 tháng 2 2016

 bạn nhấn vào đây

Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10

Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; ... ; S10 = a1 + a2 + a3 + ... + a10

Xét 10 số S1 ; S2 ; S3 ; ... ; S10 ta có 2 trường hợp :

+) Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak, k từ 1 đến 10) ⇒ tổng của k số a1, a2 , ..., ak chia hết cho 10 (đpcm)

+) Nếu không có số nào trong số S1 ; S2 ; S3 ; ... ; S10 tận cùng bằng 0 ⇒ chắc chắn phải có ít nhất 2 số nào đó tận cùng giống nhau. Ta gọi 2 số đó là Sm và Sn (1 ≤ m < n>

Sm = a1 + a2 + a3 + ... + a(m)

Sn = a1 + a2 + a3 + ... +a(m) + a(m+1) + a(m+2) + ... + a(n)

⇒ Sn - Sm = a(m+1) + a(m+2) + ... +a(n) tận cùng bằng 0

⇒ Tổng của n - m số a(m+1) ; a(m+2) ; ... a(n) chia hết cho 10 (đpcm)

Vậy trong 10 số tự nhiên bất kì tồn tại 1 số hoặc tổng 1 số liên tiếp nhau trong dãy chia hết cho 10

16 tháng 5 2016

Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4

Giả sử x chia hết cho 5 => ĐPCM

Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5

Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5

16 tháng 2 2023

đpcm là gì