Ạ= 1+1/3+1/5+1/7+...+1/17+1/19 .Hỏi a bằng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{7}{21}\) + (- \(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{1}{3}\) -\(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{10}{36}\)) + (\(\dfrac{8}{19}\) + \(\dfrac{11}{19}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{5}{18}\)) + \(\dfrac{19}{19}\) - 0 - \(\dfrac{5}{8}\)
= 0 + 1 - \(\dfrac{5}{8}\)
= \(\dfrac{3}{8}\)
b; \(\dfrac{1}{13}\) + (\(\dfrac{-5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\)) - (\(\dfrac{12}{17}\) - \(\dfrac{5}{18}\) + \(\dfrac{7}{5}\))
= \(\dfrac{1}{13}\) - \(\dfrac{5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{12}{17}\) + \(\dfrac{5}{18}\) - \(\dfrac{7}{5}\)
= (\(\dfrac{1}{13}\) - \(\dfrac{1}{13}\)) + (\(\dfrac{12}{17}\) - \(\dfrac{12}{17}\)) + (-\(\dfrac{5}{18}\) + \(\dfrac{5}{18}\)) - \(\dfrac{7}{5}\)
= 0 + 0 + 0 - \(\dfrac{7}{5}\)
= - \(\dfrac{7}{5}\)
Bài 1 c;
\(\dfrac{15}{14}\) - (\(\dfrac{17}{23}\) - \(\dfrac{80}{87}\) + \(\dfrac{5}{4}\)) + (\(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\))
= \(\dfrac{15}{14}\) - \(\dfrac{17}{23}\) + \(\dfrac{80}{87}\) - \(\dfrac{5}{4}\) + \(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\)
= (\(\dfrac{15}{14}-\dfrac{15}{14}\)) + (\(-\dfrac{17}{23}+\dfrac{17}{23}\)) - (\(\dfrac{5}{4}\) - \(\dfrac{1}{4}\)) + \(\dfrac{80}{87}\)
= 0 + 0 - 1 + \(\dfrac{80}{87}\)
= - \(\dfrac{7}{87}\)
=1/1.3.5+1/3/5/7+1/5.7.9+......+1/17/19/21
=1/4.(5-1/1.3.5+7-3/3.5.7+.....+21-17/17/19/21
=1/4.(5/1.3.5-1/1.3.5+7/3.5.7-3/3.5.7+.....+21/17.19.21-17/17.19.21
=1/4.(1/1.3-1/3.5+1/3.5-1/5.7+.....+1/17.19-1/19.21)
=1/4.(1/3.1/21.17)
=1/4.3200/9603
= 800/9603
Chúc bạn học tốt^^
Đặt \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{17.19.21}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{17.19.21}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{17.19}-\frac{1}{19.21}\)
\(=\frac{1}{1.3}-\frac{1}{19.21}=\frac{44}{133}\)
\(\Rightarrow A=\frac{44}{133}\div4=\frac{11}{133}\)
a: \(A=\dfrac{5}{7}-\dfrac{2}{7}+\dfrac{8}{11}+\dfrac{3}{11}+\dfrac{1}{2}=\dfrac{3}{7}+\dfrac{1}{2}+1=\dfrac{6+7+14}{14}=\dfrac{27}{14}\)
b: \(B=\dfrac{11}{17}+\dfrac{6}{17}-\dfrac{8}{19}-\dfrac{30}{19}+\dfrac{-3}{4}=1-2-\dfrac{3}{4}=-1-\dfrac{3}{4}=-\dfrac{7}{4}\)
c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{1}{2}-\dfrac{5}{6}+\dfrac{11}{33}-\dfrac{35}{40}\)
`=`\(\dfrac{1}{2}-\dfrac{5}{6}+\dfrac{1}{3}-\dfrac{7}{8}\)
`=`\(\dfrac{12}{24}-\dfrac{20}{24}+\dfrac{8}{24}-\dfrac{21}{24}\)
`= -21/24 = -7/8`
`b)`
\(\dfrac{2}{3}\cdot1\dfrac{3}{4}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{2}{3}\cdot\dfrac{7}{4}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{7}{6}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{5}{18}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(-\dfrac{1}{18}-\dfrac{1}{5}=-\dfrac{23}{90}\)
`c)`
\(\dfrac{1}{2}\cdot2-2\dfrac{5}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(1-\dfrac{19}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(-\dfrac{12}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(-\dfrac{3}{14}-\dfrac{10}{15}=-\dfrac{37}{42}\)
`d) `
\(\dfrac{1}{6}\cdot\dfrac{1}{11}+\dfrac{4}{11}\cdot\left(-\dfrac{1}{6}\right)+\dfrac{8}{11}\cdot\dfrac{1}{6}+\dfrac{1}{6}\cdot\dfrac{6}{11}\)
`=`\(\dfrac{1}{6}\cdot\left(\dfrac{1}{11}-\dfrac{4}{11}+\dfrac{8}{11}+\dfrac{6}{11}\right)\)
`=`\(\dfrac{1}{6}\cdot\left(\dfrac{1-4+8+6}{11}\right)\)
`=`\(\dfrac{1}{6}\cdot1=\dfrac{1}{6}\)
`e)`
\(-17\cdot\left(-23\right)+\left(-53\right)\cdot17+17\cdot14+17\cdot\left(-24\right)\)
`= 17*(23-53+14-24)`
`= 17*(-40)`
`= -680`
`f)`
\(-19\cdot218+\left(-82\right)\cdot19-533\cdot19+\left(-19\right)\cdot167\)
`= 19*(-218-82-533-167)`
`= 19*(-1000)`
`= -19000`
`g)`
\(\dfrac{2}{5}+\dfrac{3}{8}-\dfrac{11}{44}+\dfrac{9}{16}\)
`=`\(\dfrac{2}{5}+\dfrac{3}{8}-\dfrac{1}{4}+\dfrac{9}{16}\)
`=`\(\dfrac{31}{40}-\dfrac{1}{4}+\dfrac{9}{16}\)
`=`\(\dfrac{21}{40}+\dfrac{9}{16}=\dfrac{87}{80}\)
`h)`
\(\dfrac{4}{10}-1\dfrac{5}{6}\cdot2+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{4}{10}-\dfrac{11}{6}\cdot2+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{4}{10}-\dfrac{11}{3}+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(-\dfrac{49}{15}+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(-\dfrac{287}{120}-\dfrac{1}{9}=-\dfrac{901}{360}\)
`i )`
\(3\cdot\dfrac{1}{5}-\dfrac{2}{8}-\dfrac{12}{36}+\dfrac{15}{9}\)
`=`\(\dfrac{3}{5}-\dfrac{1}{4}-\dfrac{1}{3}+\dfrac{15}{9}\)
`=`\(\dfrac{7}{20}-\dfrac{1}{3}+\dfrac{15}{9}\)
`=`\(\dfrac{1}{60}+\dfrac{15}{9}=-\dfrac{33}{20}\)
`k)`
\(\dfrac{6}{8}\cdot3\dfrac{1}{2}+4\dfrac{2}{3}-\dfrac{11}{55}+\dfrac{17}{51}\)
`=`\(\dfrac{3}{4}\cdot\dfrac{7}{2}+\dfrac{14}{3}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{21}{8}+\dfrac{14}{3}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{175}{24}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{851}{120}+\dfrac{17}{51}=\dfrac{297}{40}\)
`l )`
\(\dfrac{1}{3}\cdot3\dfrac{1}{2}-4\dfrac{2}{5}-\dfrac{26}{78}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\cdot\dfrac{7}{2}-\dfrac{22}{5}-\dfrac{1}{3}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\left(\dfrac{7}{2}-1\right)-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\cdot\dfrac{5}{2}-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{5}{6}-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(-\dfrac{107}{30}+\dfrac{17}{51}=-\dfrac{97}{30}\)
P/s: Bạn tách bài ra hỏi nhé! Và ghi đề rõ ràng chứ đừng ghi ntnay, nhiều bạn nhìn vào rất khó nhìn!
`# \text {KaizulvG}`
A=1,06658886349