Cho tứ giác ABCD có AB = BD nội tiếp (O) . Qua A kẻ tiếp tuyến với đg tròn, cắt đg thẳng BC ở Q . Gọi R là giao điểm của 2 đg thẳng AB và CD . C/m QR // AD
Bài này cực kì dễ luôn !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\widehat{ACB}=\widehat{CAQ}+\widehat{CQA}\Rightarrow\widehat{CQA}=\widehat{ACB}-\widehat{CAQ}\)
Mà \(\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\); \(\widehat{CAQ}=\frac{1}{2}sđ\widebat{AC}\)( do AQ là tiêp tuyến của ( O ) )
BD = AB \(\Rightarrow sđ\widebat{AB}=sđ\widebat{BD}\)
Ta có : \(\widehat{ACB}-\widehat{CAQ}=\frac{1}{2}sđ\widebat{AB}-\frac{1}{2}sđ\widebat{AC}=\frac{1}{2}sđ\widebat{BD}-\frac{1}{2}sđ\widebat{AC}=\widehat{CRA}\)
Suy ra : \(\widehat{CRA}=\widehat{AQC}\) \(\Rightarrow\)tứ giác ARQC nội tiếp
\(\Rightarrow\widehat{QRC}=\widehat{QAC}\)
Mà \(_{\widehat{QAC}=\widehat{ADC}}\)\(\Rightarrow\widehat{QRC}=\widehat{ADC}\)
\(\Rightarrow QR//AD\)
Ta có: tỨ giác OCEA nội tiếp
=> \(\widehat{OCA}=\widehat{OEA}\)(1)
Vì OC=OB
=> Tam giác OBC cân
=> \(\widehat{OCA}=\widehat{OCB}=\widehat{OBC}\)(2)
Tứ giác ODAB nội tiếp
=> \(\widehat{ODA}=\widehat{OBC}\)( cùng bù với góc OBA) (3)
Từ (1), (2), (3)
=> \(\widehat{ODA}=\widehat{OEA}\)
=> Tam giác ODE cân có OA là đươngcao
=> OA là đường trung tuyến
=> A là trung điểm của DE
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).