K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\) \(\forall m\Rightarrow\) phương trình là bậc nhất một ẩn với mọi m

Ta có \(x=\frac{m^2-m+1}{m^2+m+1}=\frac{3\left(m^2+m+1\right)-2m^2-4m-2}{m^2+m+1}=3-\frac{2\left(m+1\right)^2}{m^2+m+1}\le3\)

\(\Rightarrow x_{max}=3\) khi \(m=-1\)

\(x=\frac{3m^2-3m+3}{3\left(m^2+m+1\right)}=\frac{m^2+m+1+2m^2-4m+2}{3\left(m^2+m+1\right)}=\frac{1}{3}+\frac{2\left(m-1\right)^2}{m^2+m+1}\ge\frac{1}{3}\)

\(x_{min}=\frac{1}{3}\) khi \(m=1\)

5 tháng 2 2017

26 tháng 1 2017

21 tháng 3 2022

a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.

b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).

Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:

m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.

Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.

Với m=1, x=1.

Với m=-1, x=-1.

So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.

22 tháng 3 2022

e cảm ơn ạ hehe

21 tháng 3 2022

1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Suy ra pt luôn có 2 nghiệm

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)

Đề sai r bạn

\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)

Vậy m=`7/4` thì A đạt GTNN

 

1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)

Do đó: Phương trình luôn có hai nghiệm

2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)

\(=\left(-2m\right)^2-7\left(2m-1\right)\)

\(=4m^2-14m+7\)

6 tháng 6 2021

a, Khi m=2, phương trình trở thành:

\(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)

b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)

\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m

Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)

\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)

\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)

 

 

6 tháng 6 2021

 pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)

a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)

\(\Delta=\left(-5\right)^2-4.2.2=9>0\)

vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)

\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)

b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)

\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)

vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2

điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi

\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)

\(< =>m>0\)

theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)

\(=>A=\left|x1-x2\right|\)

\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)

\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)

\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)

dấu = xảy ra <=>m=1(TM)

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

5 tháng 4 2021

1. Với m=5 thì (1) có dạng 

\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

2. Nếu m=0 thì (1) trở thành

\(-5x-5=0\Leftrightarrow x=-1\)

Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:

\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)

Nên phương trình (1) luôn có nghiệm với mọi m 

NV
5 tháng 4 2021

a. Bạn tự giải

b.

Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)

Với \(m\ne0\)

\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m