Cho tam giác nhọn MNP (MN<MP). Gọi I là trung điểm của NP. Trên tia đối của tia IM lấy điểm Q sao choIM=IQ.
a) Chứng minh tam giác MNI= tam giác QPI.
b) Kẻ MK vuông góc với NP. Vẽ điểm H sao cho K là trung điểm của MH. Chứng minh NH=PQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác MNP có 3 góc nhọn (MN<MP), A là trung điểm của cạnh NP. trên tia MA lấy D sao cho MA=AD.
a) chứng minh rằng tam giác mna= tam giác DPA.
b) chứng minh MN//PD.
c) chứng minh MP=ND.
cho tam giác MNP vuông tại N, biết rằng MP=10dm,MN=6cm.Tính tỉ số lượng giác của hai góc nhọn M và P
\(\sin\widehat{P}=\cos\widehat{M}=\dfrac{4}{5}\)
\(\cos\widehat{P}=\sin\widehat{M}=\dfrac{3}{5}\)
\(\tan\widehat{P}=\cot\widehat{M}=\dfrac{4}{3}\)
\(\tan\widehat{M}=\cot\widehat{P}=\dfrac{3}{4}\)
tự vẽ hình nha
a) xét tam giác MEN và tam giác MFP có:
\(\widehat{MFP}=\widehat{MEN}\left(=90'\right)\)
\(chung\widehat{NMP}\)
suy ra tam giác MEN đồng dạng với tam giác MFP (g-g)
do tam giác MEN đồng dạng với tam giác MFP
\(\Rightarrow\frac{ME}{MF}=\frac{MN}{MP}\)
lại có \(\widehat{NMP}\) chung
suy ra tam giác MFE đồng dạng với tam giác MPN
\(\Rightarrow\widehat{MEF}=\widehat{MNP}\)
Xét \(\Delta MIN\)và \(\Delta QIP\)có:
IM = IQ (gt)
\(\widehat{MIN}=\widehat{QIP}\left(gt\right)\)
NI = PI (gt)
\(\Rightarrow\Delta MIN=\Delta QIP\left(c.g.c\right)\)
Bạn có thể vẽ hình câu b mình xem được không?
đây là hình cả bài, giải giúp mình