Tìm GTNN của \(E=\frac{x}{\left(x+2010\right)^2}\)
Giúp với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
Lời giải của mình ở đây nhé bạn!
http://olm.vn/hoi-dap/question/424173.html
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)
Đặt \(t=\frac{1}{x+2010}\Rightarrow x=\frac{1}{t}-2010\)
Ta có: \(E=x\cdot\frac{1}{\left(x+2010\right)^2}=\left(\frac{1}{t}-2010\right)t^2=t-2010t^2\)
\(=-2010\left(t^2-t\cdot\frac{1}{2010}\right)=-2010\left(t^2-2t\cdot\frac{1}{4020}+\frac{1}{4020^2}\right)+\frac{1}{8040}\)
\(=-2010\left(t-\frac{1}{4020}\right)^2+\frac{1}{8040}\le\frac{1}{8040}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{4020}\Leftrightarrow x=2010\)