Cho tam giác ABC góc A bằng 90 độ, AH vuông góc với BC. Chứng minh BC2 = 2AH2 + BH2 + CH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>NH=MH
AH^2-AN^2=NH^2
BH^2-BM^2=MH^2
mà NH=MH
nên AH^2-AN^2=BH^2-BM^2
=>AH^2+BM^2=AN^2+BH^2
mình quên viết là trên tia đối của tia AD lấy E sao cho AD = HE nhé ( D thuộc AH đấy )
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
a: Xét ΔAMK vuông tại K và ΔAMH vuông tại H có
AM chung
góc MAK=góc MAH
=>ΔAMK=ΔAMH
b: Xét ΔAKQ vuông tại K và ΔAHC vuông tại H có
AK=AH
góc KAQ chung
=>ΔAKQ=ΔAHC
=>AQ=AC
Xét ΔAQC có AH/AQ=AK/AC
nên HK//CQ
Xet ΔCAG có
CH,QK là đường cao
CH cắt QK tại M
=>M là trực tâm
=>AM vuônggóc CQ
c: góc CMQ>90 độ
=>MC<QC