K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Em có cách này khác không biết có đúng không ạ, ngắn gọn hơn cô Nguyễn Linh Chi 1 xíu :33

Ta có : \(ab>a+b\)

\(\Leftrightarrow ab-a-b+1>1\)

\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)>1\)

\(\Leftrightarrow\left(b-1\right)\left(a-1\right)>1\) (1)

Ta thấy : \(\hept{\begin{cases}a>2\\b>2\end{cases}\Rightarrow}\hept{\begin{cases}a-1>1\\b-1>1\end{cases}}\) \(\Rightarrow\left(a-1\right)\left(b-1\right)>1\)

Do đó (1) đúng.

Vì vậy : \(ab>a+b\) ( đpcm )

21 tháng 2 2020

Muôn màu muôn vẻ với bất đẳng thức:

\(a>2;b>2\)

\(\Leftrightarrow\frac{1}{a}< \frac{1}{2};\frac{1}{b}< \frac{1}{2}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

\(\Leftrightarrow ab>a+b\) ( đpcm )

2 tháng 1 2018

post ít một thôi

13 tháng 9 2018

a) Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )

b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2

c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)

nên \(x^2+y^2+z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2+3\ge3\)

13 tháng 9 2018

Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)

15 tháng 9 2019

Bài 1 :

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

~ Hok tốt ~

15 tháng 9 2019

1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)

2) \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

21 tháng 7 2019

a. \(a+\frac{1}{a}\ge2\Leftrightarrow\frac{a^2+1}{a}\ge2\Leftrightarrow a^2+1\ge2a\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng)

Vậy...

b, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\)

\(\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy...

21 tháng 7 2019

Cách khác

a)Áp dụng BĐT Cô si cho 2 số dương ta có đpcm: \(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)

Đẳng thức xảy ra khi a = 1.

b) Áp dụng bđt Bunhiacopxki \(2\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\left(\sqrt{a}+b\right)^2\)

Suy ra \(\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}\). Thay vào và rút gọn ta có đpcm:

\(VT\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}=\left|\frac{\sqrt{a}+\sqrt{b}}{2}\right|=\frac{\sqrt{a}+\sqrt{b}}{2}=VP^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)