K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

\(ĐKXĐ:x\ge0\)

\(\left(\frac{2}{2-\sqrt{x}}+\frac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right)\)

\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{4-x}\)

\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4x}{4-x}\)

\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}:\frac{8\sqrt{x}+4x}{4-x}\)

\(=\frac{-2\sqrt{x}}{x-2\sqrt{x}}.\frac{4-x}{8\sqrt{x}+4x}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-2\right).2\sqrt{x}\left(4+2\sqrt{x}\right)}\)

\(=\frac{\left(2+\sqrt{x}\right)}{\sqrt{x}\left(4+2\sqrt{x}\right)}=\frac{1}{2\sqrt{x}}\)

21 tháng 2 2020

mk ko kt lại nên sai từ dòng 2 r, bạn cộng thêm (3+căn x) vào r giải tương tự

17 tháng 5 2019

P=\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\left(\frac{\sqrt{x}-3}{2\sqrt{x}-x}\right)=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{4-x}\right).\frac{2\sqrt{x}-x}{\sqrt{x}-3}=\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right].\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{\left(4x+8\sqrt{x}\right).\sqrt{x}.\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x}{\sqrt{x}-3}\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

10 tháng 8 2016
2*√(x+1) / √(x-2)
10 tháng 8 2016
(2* √x +1)/(√x -2) mới đúng
7 tháng 8 2019

= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]:\frac{x-6\sqrt{x}+9}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)

= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-3\right)^2}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)

= \(\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\sqrt{x}-3}{2-\sqrt{x}}\)

= \(\left[\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{nt}\right]:nt\)

\(=\left[\frac{8\sqrt{x}+4x}{nt}\right]:nt\)

\(=\left[\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:nt\)

\(=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-3}\)

7 tháng 8 2019
https://i.imgur.com/N39fVia.jpg
29 tháng 7 2020

\(B=\left(\frac{1}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}+\frac{x}{x\sqrt{x}-4\sqrt{x}}\right):\left(\frac{6-x}{\sqrt{x}+2}+2+\sqrt{x}\right)\)

\(B=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\left(\frac{6-x+2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)

\(B=\left(\frac{\sqrt{x}+2-2\sqrt{x}+4+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{6-x+2\sqrt{x}+4+x+2\sqrt{x}}{\sqrt{x}+2}\right)\)

\(B=\frac{6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{10+4\sqrt{x}}\)

\(B=\frac{6}{\sqrt{x}-2}\cdot\frac{1}{2\left(5+2\sqrt{x}\right)}\)

B = \(\frac{3}{\left(\sqrt{x}-2\right)\left(5+2\sqrt{x}\right)}\)

21 tháng 8 2020

đkxđ: \(x\ge0;x\ne4\)

\(Q=\left[\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}\right]\div\left[\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)

\(Q=\left[\frac{x-\sqrt{x}+7+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\div\left[\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)

\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\div\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6\sqrt{x}}\)

\(Q=\frac{\left(x+9\right)\sqrt{x}}{6x}\)

\(Q=\frac{x\sqrt{x}+9\sqrt{x}}{6x}\)

21 tháng 8 2020

đkxđ sửa tí thành \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)