K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)

Đặt \(t=x^2-4\), ta có :

\(t\left(t-6\right)-72=0\)

\(\Leftrightarrow t^2-6t-72=0\)

\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm4\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(2x+1=0\)

hoặc \(x+2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc \(x=-\frac{1}{2}\)

hoặc \(x=-2\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)

TH1 : \(x+1=0\Leftrightarrow x=-1\)

TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

=> \(x=-1;x=\pm2\)

b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40=72\)

\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)

Ta có pt mới : \(t^2-14t-32=0\) Tự xử 

5 tháng 9 2021

tìm x nha

 

5 tháng 9 2021

c, \(3x^2-7x+10=0\)

\(\Leftrightarrow3x^2+3x-10x+10=0\)

\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha 

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
8 tháng 2 2020

\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )

Vậy : ...

8 tháng 2 2020

1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-32x+12=0\)

\(\Leftrightarrow5x^2-30x-2x+12=0\)

\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)

2/ \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x+1=0\)

hoặc   \(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc   \(x=-1\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)

20 tháng 1 2019

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{2;-1;-2\right\}\)

Vậy....

20 tháng 1 2019

c, \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt: \(x^2-7=t\left(t\ge-7\right)\)

Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)

\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)

Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)

29 tháng 1 2022

1.

<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

2.

<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

3.

<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)

4.

<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

5. 

<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)

6,7. ko đủ điều kiện tìm

29 tháng 1 2022

Oki pạn cảm ơn

 

21 tháng 1 2019

\(a,x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow x^4+x^3+x^3+x^2-4x^2-4x-4x-4=0\\ \Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left[x^2\left(x+1\right)-4\left(x+1\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\\ Vậy.....\)

\(b,\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-7+3\right)\left(x^2-7-3\right)=72\\ \Leftrightarrow\left(x^2-7\right)^2-9=72\\ \Leftrightarrow\left(x^2-7\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x^2-7=9\\x^2-7=-9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\sqrt{-2}\left(vôlí\right)\end{matrix}\right.\\ Vậyx=\sqrt{2}\)

\(c,2x^3+7x^2+7x+2=0\\ \Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\\ \Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2+5x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=?\left(tựtính\right)\end{matrix}\right.\)

15 tháng 2 2020

Mấy cái này chuyển vế đổi dấu là xong í mà :3

1,

16-8x=0

=>16=8x

=>x=16/8=2

2, 

7x+14=0

=>7x=-14

=>x=-2

3,

5-2x=0

=>5=2x

=>x=5/2

Mk làm 3 cau làm mẫu thôi

Lúc đăng đừng đăng như v :>

chi ra khỏi ngt nản

từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại

22 tháng 10 2021

\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)

\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)

22 tháng 10 2021

cảm ơn kou nhaa:3

mà cái ý b đầu bài là 8x\(^2-25\), kou giải giúp tớ uwu