\(^{x^4+2x^3+5x^2+4x-12=0}\)
giúp mik với các bn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 ) = 16
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 16
<=> x2 + 5x + 6 - x2 - 3x + 10 = 16
<=> 2x + 16 = 16
<=> 2x = 0
<=> x = 0
b) 3x( 2x - 4 ) - 2x( 3x + 5 ) = 44
<=> 6x2 - 12x - 6x2 - 10x = 44
<=> -22x = 44
<=> x = -2
c) 2( 5x - 8 - 3 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 5x - 11 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 20x2 - 69x + 55 ) = 12x - 16
<=> 40x2 - 138x + 110 = 12x - 16
<=> 40x2 - 138x + 110 - 12x + 16 = 0
<=> 40x2 - 150 + 126 = 0 ( chưa học nghiệm vô tỉ nên để vô nghiệm nha :) )
=> Vô nghiệm
b) \(\left(x+3\right)^2-5x-15=0\\ \Leftrightarrow\left(x+3\right)^2-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+3-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
c) \(2x^5-4x^3+2x=0\\ \Leftrightarrow2x\left(x^4-2x^2+1\right)=0\\ \Leftrightarrow2x\left(x^2-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\\left(x^2-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của pt là : \(S=\left\{0;1;-1\right\}\)
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
Ta có : \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=2+4\\5x+x=-2+4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
b) \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}\Rightarrow\orbr{\begin{cases}2x-3x=2+3\\2x+3x=-2+3\end{cases}\Rightarrow}\orbr{\begin{cases}-x=5\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}}\)
c)/2+3x/=/4x-3/
\(\Rightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=-\left(4x-3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-4x=-3-2\\3x+4x=3-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=-5\\7x=1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}}\)
d)/7x+1/-/5x+6|=0
\(\Rightarrow\left|7x+1\right|=\left|5x+6\right|\)
\(\Rightarrow\orbr{\begin{cases}7x+1=5x+6\\7x+1=-\left(5x+6\right)\end{cases}\Rightarrow\orbr{\begin{cases}7x-5x=6-1\\7x+1=-5x-6\end{cases}\Rightarrow}\orbr{\begin{cases}2x=5\\7x+5x=-6-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}}\)
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)
\(\Leftrightarrow\left(x^4+x^3-2x^2\right)+\left(x^3+x^2-2x\right)+\left(6x^2+6x-12\right)=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)+x\left(x^2+x-2\right)+6\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)