Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\Leftrightarrow\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}-\frac{1}{25}\ge0\)
\(\Leftrightarrow\frac{25a^2+25b^2-12a^2-25ab-12b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)
\(\Leftrightarrow\frac{13a^2-25ab+13b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)
\(\Leftrightarrow\frac{13\left(a^2-2.\frac{25}{26}ab+\frac{625}{676}b^2\right)+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)
\(\Leftrightarrow\frac{13\left(a-\frac{25}{26}b\right)^2+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)
Do a, b > 0 nên cả tử và mẫu của phân thức bên vế trái đều lớn hơn 0.
Vậy bất đẳng thức cuối là đúng hay \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\forall a,b>0;a\ne-\frac{3b}{4};b\ne-\frac{4b}{3}\)
$A=\frac{64abc}{(a+b)(b+c)(c+a)}+1+\frac{16ab}{(b+c)(c+a)}+\frac{16bc}{(b+a)(c+a)}+\frac{16ac}{(a+b)(a+c)}+4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})=4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16ab(a+b)+16bc(b+c)+16ac(a+c)}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16(a+b)(b+c)(c+a)-32abc}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{32abc}{(a+b)(b+c)(c+a)}+17=4\left [\frac{a}{b+c} +\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)} \right ]+\frac{16abc}{(a+b)(b+c)(c+a)}+17\geq 4.2+17+\frac{16abc}{(a+b)(b+c)(c+a)}=25+\frac{16abc}{(a+b)(b+c)(c+a)}> 25$
( Do áp dụng bđt Schur mở rộng là :$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)}\geq 2$
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)