K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

4S = 4 + 42 + 43 + 44 + ... + 4120

4S - S = 4120 - 1

3S = 4120 - 1

3S + 1 = 4120 - 1 + 1

Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)

\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)

\(\Rightarrow3S+1< B\)

Vậy \(3S+1< B\)

Chúc bạn học tốt !!!

21 tháng 8 2023

\(4S=4+4^2+4^3+4^4+...+4^{100}\)

\(3S=4S-S=4^{100}-1\Rightarrow3S+1=4^{100}\)

Ta có \(32^{20}=\left(2^5\right)^{20}=2^{100}\)

\(\Rightarrow4^{100}>2^{100}\Rightarrow3S+1>32^{20}\)

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

30 tháng 12 2018

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM

20 tháng 8 2023

\(S=1+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)

\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)

\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)

\(\Rightarrow3S+1=4^{100}-12\)

\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)

 mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)

\(\Rightarrow3S+1>32^{20}\)

NV
25 tháng 12 2022

Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)

\(S=4^0+4^1+...+4^{34}+4^{35}\)

\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)

\(\Rightarrow4S-S=4^{36}-4^0\)

\(\Rightarrow3S=4^{36}-1< 4^{36}\)

Vậy \(3S< 64^{12}\)

25 tháng 12 2022

\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)

24 tháng 12 2017

mình chỉ biết câu a thui nha thông cảm 

3S+2 =22017 

Vậy là chứng minh được rồi ^ ^

7 tháng 3 2018

Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé

a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)

                    \(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)

                    \(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)

  Mà S = ( 4S - S) :3

                     \(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)

                               \(=\frac{\left(2^{2017}-2\right)}{3}\)

=> 3S + 2     \(=3\cdot\frac{2^{2017}-2}{3}+2\)

                     \(=\frac{3\left(2^{2017}-2\right)}{3}+2\)

                      \(=\frac{2^{2017}-2}{1}+2\)

                       \(=2^{2017}-2+2\)

                        \(=2^{2017}\)

  Mà 22017 là một lũy thừ của 2

=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)

20 tháng 1 2016

vòng 12 ak , A..<..B

mình làm rồi đugs tick nah

20 tháng 1 2016

>. chac chan

 

10 tháng 12 2017

Ta co:S=4^0+4^1+4^2+...+4^35

=>4S=4^1+4^2+...+4^36

=>4S-S=(4^1+4^2+...+4^36)-(4^0+4^1+...+4^35)

hay 3S=4^36-1

3S=64^12-1<64^12

Vay 3S<64^12

co gi hoi mik de mik lam tiep nhe

bye...

21 tháng 12 2020

hello