Cho S=1+4+42+43+...+4119 và B=3160.
So sánh 3S+1 với B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4S=4+4^2+4^3+4^4+...+4^{100}\)
\(3S=4S-S=4^{100}-1\Rightarrow3S+1=4^{100}\)
Ta có \(32^{20}=\left(2^5\right)^{20}=2^{100}\)
\(\Rightarrow4^{100}>2^{100}\Rightarrow3S+1>32^{20}\)
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)
Với p = 3k + 1
\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)
Với p = 3k + 2
\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
Từ (1) và (2) => ĐPCM
\(S=1+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)
\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)
\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)
\(\Rightarrow3S+1=4^{100}-12\)
\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)
mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)
\(\Rightarrow3S+1>32^{20}\)
Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)
\(S=4^0+4^1+...+4^{34}+4^{35}\)
\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)
\(\Rightarrow4S-S=4^{36}-4^0\)
\(\Rightarrow3S=4^{36}-1< 4^{36}\)
Vậy \(3S< 64^{12}\)
mình chỉ biết câu a thui nha thông cảm
3S+2 =22017
Vậy là chứng minh được rồi ^ ^
Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé
a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)
\(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)
\(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)
Mà S = ( 4S - S) :3
\(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)
\(=\frac{\left(2^{2017}-2\right)}{3}\)
=> 3S + 2 \(=3\cdot\frac{2^{2017}-2}{3}+2\)
\(=\frac{3\left(2^{2017}-2\right)}{3}+2\)
\(=\frac{2^{2017}-2}{1}+2\)
\(=2^{2017}-2+2\)
\(=2^{2017}\)
Mà 22017 là một lũy thừ của 2
=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)
Ta co:S=4^0+4^1+4^2+...+4^35
=>4S=4^1+4^2+...+4^36
=>4S-S=(4^1+4^2+...+4^36)-(4^0+4^1+...+4^35)
hay 3S=4^36-1
3S=64^12-1<64^12
Vay 3S<64^12
co gi hoi mik de mik lam tiep nhe
bye...
4S = 4 + 42 + 43 + 44 + ... + 4120
4S - S = 4120 - 1
3S = 4120 - 1
3S + 1 = 4120 - 1 + 1
Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)
\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)
\(\Rightarrow3S+1< B\)
Vậy \(3S+1< B\)
Chúc bạn học tốt !!!