cho a,b,c la cac so thuc duong chung minh \(a^3/(b+3 c)^3+b^3/(c+3 a)^3 + c^3/(a+3b)^3 >+3/64 \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
\(a^3+a^3+1\ge3a^2\Rightarrow a^3+\frac{1}{2}\ge\frac{3}{2}a^2\)
\(\Rightarrow VT+\frac{3}{2}\ge\frac{3}{2}a^2+\frac{3}{2}b^2+\frac{3}{2}c^2+ab+bc+ca\)
\(\Rightarrow VT+\frac{3}{2}\ge a^2+b^2+c^2+\frac{1}{2}\left(a+b+c\right)^2\)
\(\Rightarrow VT+\frac{3}{2}\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2=\frac{15}{2}\)
\(\Rightarrow VT\ge\frac{15}{2}-\frac{3}{2}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)