tính nhanh:
E=2^100-2^99-2^98-2^97-...-2^2-2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
Đặt \(A=2^{100}-2^{99}-2^{98}-2^{97}-\cdot\cdot\cdot-2-1\)
\(=-\left(1+2+\cdot\cdot\cdot+2^{99}+2^{100}\right)\)
Đặt \(B=1+2+\cdot\cdot\cdot+2^{99}+2^{100}\)
\(2B=2+2^2+\cdot\cdot\cdot+2^{100}+2^{101}\)
\(2B-B=2+2^2+\cdot\cdot\cdot+2^{100}+2^{101}-\left(1+2+\cdot\cdot\cdot+2^{99}+2^{100}\right)\)
\(B=2^{101}-1\)
Thay \(B=2^{101}-1\) vào \(A\), ta được:
\(A=-\left(2^{101}-1\right)\)
\(=1-2^{101}\)
#\(Toru\)
Xin hỏi phải giải thế này chứ nhỉ:
Đặt \(S=2^{100}-2^{99}-2^{98}-2^{97}-..-2-1\\ \Rightarrow2S=2^{101}-2^{100}-2^{99}-2^{98}-....-2^2-2\\ \Rightarrow S-2S=2^{101}-2^{100}-2^{100}+1\\ \Rightarrow S=2^{101}-2.2^{100}+1\\ \Rightarrow S=1.\)
a) \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow3A=A+2A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
b) \(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
\(\Rightarrow4B=B+3B=3^{101}+1\)
\(\Rightarrow B=\frac{3^{101}+1}{4}\)