Chứng minh rằng nếu: \(a-\frac{1}{a}=\sqrt{a}-\sqrt{\frac{1}{a}}\) thì \(a-\frac{1}{a}=\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
muốn hỏi thì copy link rồi hỏi nhé bạn!!
https://olm.vn/bg/luyenthichuyen/thao-luan
b/ \(a-\frac{1}{a}=\sqrt{a}+\frac{1}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}-\frac{1}{\sqrt{a}}=1\)
\(\Leftrightarrow a+\frac{1}{a}-2=1\)
\(\Leftrightarrow a+\frac{1}{a}=3\)
\(\Leftrightarrow a^2+\frac{1}{a^2}+2=9\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2=5\)
\(\Leftrightarrow a-\frac{1}{a}=\sqrt{5}\)
a/ Ta có: \(x=\frac{1-5y}{2}\) thê vô ta được
\(x^2+y^2=y^2+\left(\frac{1-5y}{2}\right)^2=\frac{29y^2-10y+1}{4}\)
\(=\frac{1}{116}\left(29^2y^2-290y+29\right)=\frac{1}{116}\left[\left(29^2y^2-2.29y.5+25\right)+4\right]\)
\(=\frac{1}{116}\left[\left(29y-5\right)^2+4\right]\ge\frac{4}{116}=\frac{1}{29}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow\left(a+c\right)\left(b+c\right)=c^2\)
Vì \(a,b>0\)mà \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\)nên \(c< 0\Rightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
\(\Rightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\Rightarrow\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)
\(\Rightarrow\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=a+b\)---> 2 vế đều dương nên ta lấy căn 2 vế:
\(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)
Ta có: \(\left(\sqrt{a}+\sqrt{c}\right)^2=a+2\sqrt{ac}+c=2b+2\sqrt{ac}\)(1)
Lại có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\)
\(=\frac{\left(2\sqrt{b}+\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(Nhân cả tử & mẫu với \(\sqrt{a}+\sqrt{c}\))
\(=\frac{2\sqrt{ab}+2\sqrt{bc}+\left(\sqrt{a}+\sqrt{c}\right)^2}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(2)
Thế (1) và (2) => \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}\)\(=\frac{2\sqrt{ab}+2\sqrt{bc}+2b+\sqrt{ca}}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\frac{2}{\sqrt{a}+\sqrt{c}}.\)
\(\Rightarrow\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)(đpcm).