Cho tam giác ABC vuông tại A có \(\frac{AB}{AC}=\frac{8}{15}\)và BC = 51cm
a) Tính AB, AC
b) Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc
AB2+AC2=BC2=2601(1)
Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)
\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)
Thay vào (1) ta đc
\(AB^2+\frac{AB^2.225}{64}=2601\)
\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)
\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
Vậy ........
b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)
tk mk nhé
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )
Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)
\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)
\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)
Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)
Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a: BC=căn 12^2+16^2=20cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC=3/4
=>BD/3=DC/4=(BD+DC)/(3+4)=20/7
=>BD=60/7cm; DC=80/7cm
Xét ΔCAB có ED//AB
nên ED/AB=CD/CB=4/7
=>ED/12=4/7
=>ED=48/7cm
b: S ABC=1/2*12*16=96cm2
BD/BC=3/7
=>S ABD/S ABC=3/7
=>S ABD=288/7cm2
a) Theo bài ra, ta có:
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}=k\Rightarrow\left\{{}\begin{matrix}AB=8k\\AC=15k\end{matrix}\right.\)
Áp dụng định lý Pytago vào △ABC vuông tại A, ta có:
\(BC^2=AB^2+AC^2\Rightarrow51^2=\left(8k\right)^2+\left(15k\right)^2=64k^2+225k^2=289k^2\Rightarrow2601=289k^2\Rightarrow k^2=9\Rightarrow k=3\left(k>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}AB=8.k=8.3=24\left(cm\right)\\AC=15.k=15.3=45\left(cm\right)\end{matrix}\right.\)
b)Ta có:
S△ABC=\(\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)