Tìm X: x(3x+1)+3x+1=0
Mn giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+3x^2+3x=0\\ \Leftrightarrow x\left(x^2+3x+3\right)=0\\ \Leftrightarrow x=0\left(x^2+3x+3=x^2+3x+\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\right)\)
\(x^3+3x^2+3x=0\)
\(\Rightarrow x\left(x^2+3x+3\right)=0\)
Mà: \(x^2+3x+3>0\)
=> x = 0
1) \(3x\left(x-4\right)-x+4=0\)
\(\Rightarrow3x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)
2) \(2x\left(2x+3\right)-2x-3=0\)
\(\Rightarrow2x\left(2x+3\right)-\left(2x+3\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(3x\left(x-4\right)-x+4=0\\ \Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\\ 2x\left(2x+3\right)-2x-3=0\\ \Leftrightarrow\left(2x+3\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(a.\left(2x-1\right)^2-\left(4x-3\right)\left(x+5\right)=0\) \(\Leftrightarrow4x^2-4x+1-\left(4x^2+17x-15\right)=0\)
\(\Leftrightarrow-21x+16=0\Leftrightarrow x=\dfrac{16}{21}\) . Vậy ...
b.\(x\left(x-1\right)=3\left(x-1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
c.\(\left(x-1\right)\left(3x-7\right)=\left(x-1\right)\left(x+3\right)\Leftrightarrow\left(x-1\right)\left(3x-7-x-3\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\) . Vậy ...
d.\(\left(x-3\right)^2+2x-6=0\Leftrightarrow\left(x-3\right)\left(x-3+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
a) \(x^3+3x^2+3x=0\Rightarrow x\left(x^2+3x+3\right)=0\Rightarrow x\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\Rightarrow x=0\)
(do \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))
b) \(x^3+6x^2+12x=0\Rightarrow x\left(x^2+6x+12\right)=0\Rightarrow x\left[\left(x+3\right)^2+4\right]=0\Rightarrow x=0\)
(do (x+3)2+4≥4>0)
a: Ta có: \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)
hay x=0
b: Ta có: \(x^3+6x^2+12x=0\)
\(\Leftrightarrow x\left(x^2+6x+12\right)=0\)
hay x=0
\(\Leftrightarrow3^{x-1}\left(1+3+3^2\right)=39\\ \Leftrightarrow3^{x-1}\cdot13=39\\ \Leftrightarrow3^{x-1}=3=3^1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\)
\(\Leftrightarrow3^x\cdot\dfrac{13}{3}=39\)
\(\Leftrightarrow x=2\)
Lời giải:
$\Delta'=(\sqrt{3}-1)^2+4\sqrt{3}=(\sqrt{3}+1)^2$
Do đó pt có 2 nghiệm:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{1-\sqrt{3}+\sqrt{3}+1}{\sqrt{3}}=\frac{2}{\sqrt{3}}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{1-\sqrt{3}-\sqrt{3}-1}{\sqrt{3}}=-2\)
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
huhu...nghiệm là cái j mk còn ko bt thì sao giải cho bn được
\(\Rightarrow\left(3x+1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Nhanh thế anh, lượn qua lượn lại mới có câu mà bị cướp mất :(