Tìm m để các bất phương trình sau vô nghiệm:
a) \(m^2x+4m-3< x+m^2\)
b) \(m^2x+1\ge m+\left(3m-2\right)x\)
c) \(mx-m^2>mx-4\)
d) \(3-mx< 2\left(x-m\right)-\left(m+1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
1. \(x+3m>3+mx.\Leftrightarrow x+3m-3-mx>0.\\ \Leftrightarrow\left(1-m\right)x+3m-3>0.\\ \Leftrightarrow\left(1-m\right)x>-3m+3.\left(1\right)\)
+) Nếu \(1-m=0.\Leftrightarrow m=1.\) Thay vào (1):
\(0x>-3.1+3.\Leftrightarrow0x>0\) (vô lý).
\(\Rightarrow\) Bất phương trình vô nghiệm.
+) Nếu \(1-m>0.\Leftrightarrow m< 1.\)
Khi đó (1) có nghiệm: \(x>\dfrac{-3m+3}{1-m}.\Leftrightarrow x>\dfrac{-3\left(m-1\right)}{-\left(m-1\right)}.\Leftrightarrow x>3.\)
+) Nếu \(1-m< 0.\Leftrightarrow m>1.\)
Khi đó (1) có nghiệm: \(x< \dfrac{-3m+3}{1-m}.\Leftrightarrow x< 3.\)
1/ x=3 , m=1
bl : tìm nghiệm , tạo khoảng thử nghiệm
2/ \(m=\pm\sqrt{-\dfrac{25-2x}{25-x}}\)
\(x=\dfrac{25\left(1+m^2\right)}{2+m^2}\)
3/ x=-m+1
m = \(\left\{{}\begin{matrix}3\\-x+1\end{matrix}\right.\)
4/ m= \(\left\{{}\begin{matrix}x-3\\3\end{matrix}\right.\)
x= m+3
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)
a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)
- Với \(m=1\) BPT vô nghiệm
- Với \(m=-1\) BPT luôn đúng
- Với \(m\ne\pm1\) BPT luôn có nghiệm
Vậy \(m=1\) thì BPT vô nghiệm
b/ \(\Leftrightarrow\left(m^2-3m+2\right)x\ge m-1\Leftrightarrow\left(m-1\right)\left(m-2\right)x\ge m-1\)
- Với \(m\ne\left\{1;2\right\}\) BPT luôn có nghiệm
- Với \(m=1\Rightarrow0\ge0\) BPT có nghiệm
- Với \(m=2\Rightarrow0\ge1\) BPT vô nghiệm
Vậy \(m=2\) thì BPT vô nghiệm
c/ \(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)
- Với \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) BPT vô nghiệm
- Với \(-2< m< 2\) BPT luôn đúng
Vậy \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) thì BPT vô nghiệm
d/ \(\Leftrightarrow\left(m+2\right)x>m^2+4m+4=\left(m+2\right)^2\)
Với \(m=-2\) BPT vô nghiêm
Với \(m\ne-2\) BPT luôn có nghiệm
Vậy \(m=-2\) thì BPT vô nghiệm