K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo bài ra, ta có: \(2x-1⋮x-1\)

\(\Rightarrow2\left(x-1\right)+1⋮x-1\)

\(\Rightarrow1⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\mp1\right\}\)

Ta có các trường hợp sau:

\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)

Vậy \(x\in\left\{2;0\right\}\)

20 tháng 2 2020

2x-1 chia hết cho x-1

=>2x-2+1 chia hết cho x-1

=>2(x-1)+1 chia hết cho x-1

mà 2(x-1) chia hết cho x-1

=>1 chia hết cho x-1 => x-1 thuộc Ư(1) thuộc {1;-1} => x thuộc {2;0}

Vậy x thuộc {2;0}

Chúc bạn học tốt ^^!!!

14 tháng 4 2015

Xin lỗi \(y=-1;x\in Z\)giờ thì đúng rồi nhé

Theo đề bài, ta có: \(2x-1⋮x-1\)

\(\Rightarrow2\left(x-1\right)+1⋮x-1\)

\(\Rightarrow1⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\mp1\right\}\)

Ta có các trường hợp sau:

\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)

Vậy \(x\in\left\{2;0\right\}\)

\(2x-1⋮x-1\)

\(2\left(x-1\right)+1⋮x-1\)

Vì \(2\left(x-1\right)⋮x-1\)

\(1⋮x-1\)

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng 

x-11-1
x20
5 tháng 3 2018

a) \(x-2⋮x+7\)

\(x+7-9⋮x+7\)

Mà \(x+7⋮x+7\)

\(\Rightarrow-9⋮x+7\)

\(\Rightarrow x+7\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(x+7\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(x\)\(-6\)\(-8\)\(-4\)\(-10\)\(2\)\(-16\)

                    Vậy, \(x\in\left\{-16;-10;-8;-6;-4;2\right\}\)

b)  \(2x+1⋮2x-3\)

\(2x-3+4⋮2x-3\)

Mà \(2x-3⋮2x-3\)

\(\Rightarrow4⋮2x-3\)

\(\Rightarrow2x-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

     VÌ \(2x-3\)là số lẻ và \(x\inℤ\)

\(\Rightarrow2x-3\in\left\{\pm1\right\}\)

\(2x-3\)\(1\)\(-1\)
\(x\)\(2\)\(1\)

                    Vậy, \(x\in\left\{1;2\right\}\)

21 tháng 7 2019

a)Ta có : \(x-5⋮x+2=>x-5-\left(x+2\right)⋮x-2=>-7⋮x-2\)

\(=>x-2\inƯ\left(7\right)\left\{-7;-1;1;7\right\}\)

\(=>x\in\left\{-5;1;3;9\right\}\)

b)Ta có : \(2x+1⋮2x-1=>2x+1-\left(2x-1\right)⋮2x-1=>2⋮2x-1\)

\(=>2x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(=>2x\in\left\{-1;0;2;3\right\}\)

\(=>x\in\left\{0;1\right\}\)(vì \(x\in Z\))

c)\(\left(x+5\right)-3\left(x+5\right)+2⋮x+5=>2⋮x+5=>x+5\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(=>x\in\left\{-7;-6;-4;-3\right\}\)

d)\(x+1⋮x+2=>x+2-1⋮x+2\)

\(=>1⋮x+2=>x+2\inƯ\left(1\right)=\left\{1;-1\right\}=>x\in\left\{-1;-3\right\}\)

\(a,x-5⋮x+2\)

\(\Rightarrow x+2-7⋮x+2\)

\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x + 2 = 1=> x = -1

x + 2 = -1 => x = -3

.... tương tự nhé ~ 

\(2x+3⋮x-5\)

\(\Rightarrow2x-10+7⋮x-5\)

\(\Rightarrow2\left(x-5\right)+7⋮x-5\)

\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

x - 5 = 1 => x = 6 

.... 

20 tháng 1 2018

nhanh nhanh lẹ lẹ giúp chế coi. chế bị bắt chép phạt vì tội  làm bài sai đây( làm sai 5 ý trên tổng thế 47 bài mỗi bài ít nhát 20 ý đây. cô giáo ác vcl)

20 tháng 1 2018

a, 3x + 2 chia hết cho 2x - 1

=> ( 3x + 1 ) + 1 chia hết cho 2x - 1

mà 3x + 1 chia hết cho 2x - 1

=> 1 chia hết cho 2x - 1

=> 2x - 1 thuộc Ư(1) = { -1 ; 1 }

Ta có :

2x - 1-11
2x02
x01
11 tháng 3 2020

a)7 chia hết cho 2x-1

=>2x-1 thuộc Ư(6)={-3;-2;-1;1;2;3}

Do 2x-1 là số lẻ nên 2x-1 thuộc {-3;-1;1}

x thuộc {-1;0;1}

b)x-6 chia hết cho x-1

Ta có : x-6=(x-1)-5

Do x-1 chia hết cho x-1 nên 5 cũng chia hết cho x-1

=>x-1 thuộc Ư(5)={-5;-1;1;5}

=.x thuộc {-4;0;2;6}

Chúc bạn học tốt

15 tháng 3 2020

a) Để \(7⋮2x-1\)\(\Rightarrow\)\(2x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)

- Ta có bảng giá trị:

\(2x-1\)\(-1\)\(1\)\(-7\)\(7\)
\(x\)\(0\)\(1\)\(-3\)\(4\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-3;0;1;4\right\}\)

b) Ta có: \(x-6=\left(x-1\right)-5\)

- Để \(x-6⋮x-1\)\(\Leftrightarrow\)\(\left(x-1\right)-5⋮x-1\)mà  \(x-1⋮x-1\)

\(\Rightarrow\)\(5⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)

- Ta có bảng giá trị:

\(x-1\)\(-1\)\(1\)\(-5\)\(5\)
\(x\)\(0\)\(2\)\(-4\)\(6\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-4;0;2;6\right\}\)

25 tháng 12 2017

Ta có: \(\frac{2x^2+2x+3}{x+1}=\frac{2x\left(x+1\right)+3}{x+1}=2x+\frac{3}{x+1}\)

Do x thuộc Z để 2x2+2x+3 chia hết x+1 thì 3 chia hết cho x+1

=> x+1 thuộc {-3;-1;1;3}

=> x thuộc {-4; -2; 0; 2}