K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

\(\hept{\begin{cases}-1\le x\le1\\-1\le y\le1\\-1\le z\le1\end{cases}}\Leftrightarrow x^2;y^2;z^2\le1\)

Mà: \(x;y;z\le1\Leftrightarrow y^4\le y^2;z^6\le x^2\)

\(\Leftrightarrow x^2+y^4+z^6\le x^2+y^2+z^2\)

Trong x;y;z có ít nhất 2 số cùng dấu,nghhiax là có tích >=0,giả sử đó là xy

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2xy=\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

10 tháng 1 2021

\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)

Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)

Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )

=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)

=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)

Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)

=> P ≥ 4/9

Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3