Cho P=\(\frac{n+4}{2n-1}\)( với n\(\in\)Z) tìm các giá trị của n để p là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
a) Để A là phân số thì : 2n - 4 ≠ 0
2n ≠ 4
n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1
\(\frac{n+4}{2n-1}\)= \(\frac{2\left(n+4\right)}{2n-1}\)= \(\frac{2n+8}{2n-1}\)= \(\frac{2n-1+9}{2n-1}\)= \(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1
=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}
=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}
=> n \(\in\){ 1;2;5; 0; -1; -4}
Vậy...
\(P=\frac{n+4}{2n-1}\)
\(\Leftrightarrow n+4⋮2n-1\)
\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)
\(\Leftrightarrow2n+8⋮2n-1\)
\(\Leftrightarrow2n-1+9⋮2n-1\)
Vì \(2n-1⋮2n-1\)
\(\Leftrightarrow9⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng xét giá trị