\(\infty\)x 0 = ?
Cho mình xin kết quả và lí do với ạ, thằng em mình nó cứ không tin là \(\infty\)x 0 = 0. Cho mình cảm ơn ạ! ∩^ω^∩
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)
Vậy A > 0
Bạn nên show toàn bộ lời giải để mọi người hiểu cách bạn làm hơn.
Lời giải:
$\Delta'=m^2-m+3>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$.
Khi đó, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=2m$
$x_1x_2=m-3$
Để $x_1,x_2\in (1;+\infty)$ thì:
\(\left\{\begin{matrix}
x_1+x_2>2\\
(x_1-1)(x_2-1)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_1+x_2>2\\
x_1x_2-(x_1+x_2)+1>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2m>2\\ m-3-2m+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>1\\ m< -2\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $m$ để pt có 2 nghiệm pb thuộc khoảng đã cho.
-2\(x^2+xy^2\) (\(xy^2\) là \(1xy^2\) )
=(\(-2+1\)) (\(x^2.x\)) . \(y^2\) (Ta nhân số theo số và phần biến theo phần biến)
= -1\(x^3y^2\)
Tại \(x\)= -1 ; \(y\) = - 4 ta có
-1.(-1)\(^3\).(-4)\(^2\)= -1.(-1). 16 = 16
Vậy tại x= -1 ; y = - 4 biểu thức -2\(x^2+xy^2\) là 16
\(-x^2y+2y^2\) (\(-x^2y\) là \(-1x^2y\))
= (-1+2). \(x^2.\left(y.y^2\right)\)
= 1\(x^2y^3\)
Tại x= 0 ; y = - 2 ta có
1.\(\left(0\right)^2.\left(-2\right)^3\)= 1. 0. -8 = 0 (0 nhân với số nào cũng bằng 0)
Vậy tại x= 0 ; y = - 2 biểu thức \(-x^2y+2y^2\) là 0
NHỮNG CHỖ NÀO CÓ IN ĐẬM VÀ NGHIÊNG LÀ KHÔNG GHI NHA
| x | + | 2x - 3 | = 0 (1)
Ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|2x-3\right|\ge0\end{cases}}\forall x\)
\(\Rightarrow\left|x\right|+\left|2x-3\right|\ge0\forall x\) (2)
Từ (1) và (2) => (1) \(\Leftrightarrow\) \(\hept{\begin{cases}\left|x\right|=0\\\left|2x-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
@@ Học tốt
!!! K chắc
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+3x}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-\sqrt{x^2+3x}\right)\left(x+\sqrt{x^2+3x}\right)}{x+\sqrt{x^2+3x}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-3x}{x+\sqrt{x^2+3x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-3}{1+\sqrt{1+\dfrac{3}{x}}}=-\dfrac{3}{2}\)
Thay x=7+căn 2022 vào pt, ta được:
\(49+14\sqrt{2022}+2022-7-\sqrt{2022}+3m-2=0\)
=>\(3m+2062+13\sqrt{2022}=0\)
=.\(m=\dfrac{-2062-13\sqrt{2022}}{3}\)
\(\infty x0=0\)
Đây chính là kết quả đúng
Tất cả mọi số thuộc R x 0 = 0
kkkkkkkkkkk đngs cho mk
Bằng 0