Cho hình bình hành ABCD. Gọi M,N là hai điểm lần lượt nằm trên các đoạn thẳng AB và AD ( M, N không trùng A) sao cho AB/AM + 2AD/AN = 4. CMR: khi M, N thay đổi, đường thẳng MN luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định
Gọi G là trung điểm của CD. Cho MN cắt AG tại I. Ta sẽ chứng minh điểm I cố định.
Thật vậy: Kéo dài tia BG cắt tia AD tại P. Qua 2 điểm B và P kẻ các đường thẳng song song với MN, chúng cắt đường thẳng AG lần lượt ở 2 điểm E và F.
Dễ thấy: \(\Delta\)BGC = \(\Delta\)PGD (g.c.g) => GB = GP (2 cạnh tương ứng)
=> \(\Delta\)BEG = \(\Delta\)PFG (g.c.g) => GE = GF (2 cạnh tương ứng) => EF = 2.GE
Xét \(\Delta\)PAF có: N thuộc AP; I thuộc AF; IN // PF => \(\frac{AP}{AN}=\frac{AF}{AI}=\frac{AE+EF}{AI}=\frac{AE+2.GE}{AI}\)(ĐL Thales)
Do \(\Delta\)BGC = \(\Delta\)PGD (cmt) nên BC = PD. Mà BC = AD => PD = AD = 1/2 .AP
\(\Rightarrow\frac{2.AD}{AN}=\frac{AE+2.GE}{AI}\). Tương tự: \(\frac{AB}{AM}=\frac{AE}{AI}\)
Do đó: \(\frac{AB}{AM}+\frac{2.AD}{AN}=\frac{2\left(AE+GE\right)}{AI}=\frac{2.AG}{AI}\). Suy ra \(\frac{2.AG}{AI}=4\)(Theo gt)
\(\Rightarrow\frac{AG}{AI}=2\)=> I là trung điểm của AG
Ta thấy: Hbh ABCD cố định có G là trung điểm CD nên AG cố định. Mà I là trung điểm AG nên I cũng cố định.
Lại có: MN đi qua I nên MN luôn đi qua 1 điểm cố định (đpcm).
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành