K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN

Mà AM=CN

=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)

=> AC và MN là đường chéo của hbh AMCN

Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

A cố định C cố định => O cố định => MN luôn đi qua O cố định

6 tháng 10 2018

A B C D M N I P E F G

Gọi G là trung điểm của CD. Cho MN cắt AG tại I. Ta sẽ chứng minh điểm I cố định.

Thật vậy: Kéo dài tia BG cắt tia AD tại P. Qua 2 điểm B và P kẻ các đường thẳng song song với MN, chúng cắt đường thẳng AG lần  lượt ở 2 điểm E và F.

Dễ thấy: \(\Delta\)BGC = \(\Delta\)PGD (g.c.g) => GB = GP (2 cạnh tương ứng) 

=> \(\Delta\)BEG = \(\Delta\)PFG (g.c.g) => GE = GF (2 cạnh tương ứng) => EF = 2.GE

Xét \(\Delta\)PAF có: N thuộc AP; I thuộc AF; IN // PF => \(\frac{AP}{AN}=\frac{AF}{AI}=\frac{AE+EF}{AI}=\frac{AE+2.GE}{AI}\)(ĐL Thales)

Do \(\Delta\)BGC = \(\Delta\)PGD (cmt) nên BC = PD. Mà BC = AD => PD = AD = 1/2 .AP

\(\Rightarrow\frac{2.AD}{AN}=\frac{AE+2.GE}{AI}\). Tương tự: \(\frac{AB}{AM}=\frac{AE}{AI}\)

Do đó: \(\frac{AB}{AM}+\frac{2.AD}{AN}=\frac{2\left(AE+GE\right)}{AI}=\frac{2.AG}{AI}\). Suy ra \(\frac{2.AG}{AI}=4\)(Theo gt)

\(\Rightarrow\frac{AG}{AI}=2\)=> I là trung điểm của AG

Ta thấy: Hbh ABCD cố định có G là trung điểm CD nên AG cố định. Mà I là trung điểm AG nên I cũng cố định.

Lại có: MN đi qua I nên MN luôn đi qua 1 điểm cố định (đpcm).

29 tháng 10 2021

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành