Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ba số thực dương x;y;z thoả mãn
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nhất của biểu thức:P=\(\frac{2x+z}{x+2z}\)
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow9x^2+9y^2+9z^2-10y\left(x+z\right)-10zx\le0\)
\(\Leftrightarrow9\left(\frac{x}{z}\right)^2+9\left(\frac{y}{z}\right)^2+9-10.\frac{y}{z}\left(\frac{x}{z}+1\right)-10\frac{x}{z}\le0\)
Đặt \(\left(\frac{x}{z};\frac{y}{z}\right)=\left(a;b\right)>0\)
\(9b^2-10b\left(a+1\right)+9a^2-10a+9\le0\)
Để BPT đã cho có nghiệm
\(\Rightarrow\Delta'=25\left(a+1\right)^2-9\left(9a^2-10a+9\right)\ge0\)
\(\Leftrightarrow25a^2+50a+25-81a^2+90a-81\ge0\)
\(\Leftrightarrow-56a^2+140a-56\ge0\Rightarrow\frac{1}{2}\le a\le2\)
\(P=\frac{2a+1}{a+2}\Rightarrow\frac{4}{5}\le P\le\frac{5}{4}\)
\(\Rightarrow P_{min}=\frac{4}{5}\) khi \(a=\frac{1}{2}\) hay \(z=2x\); \(P_{max}=\frac{5}{4}\) khi \(x=2z\)
Đoạn suy ra \(\frac{4}{5}\le P\le\frac{5}{4}\)là sao ak
\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow9x^2+9y^2+9z^2-10y\left(x+z\right)-10zx\le0\)
\(\Leftrightarrow9\left(\frac{x}{z}\right)^2+9\left(\frac{y}{z}\right)^2+9-10.\frac{y}{z}\left(\frac{x}{z}+1\right)-10\frac{x}{z}\le0\)
Đặt \(\left(\frac{x}{z};\frac{y}{z}\right)=\left(a;b\right)>0\)
\(9b^2-10b\left(a+1\right)+9a^2-10a+9\le0\)
Để BPT đã cho có nghiệm
\(\Rightarrow\Delta'=25\left(a+1\right)^2-9\left(9a^2-10a+9\right)\ge0\)
\(\Leftrightarrow25a^2+50a+25-81a^2+90a-81\ge0\)
\(\Leftrightarrow-56a^2+140a-56\ge0\Rightarrow\frac{1}{2}\le a\le2\)
\(P=\frac{2a+1}{a+2}\Rightarrow\frac{4}{5}\le P\le\frac{5}{4}\)
\(\Rightarrow P_{min}=\frac{4}{5}\) khi \(a=\frac{1}{2}\) hay \(z=2x\); \(P_{max}=\frac{5}{4}\) khi \(x=2z\)
Đoạn suy ra \(\frac{4}{5}\le P\le\frac{5}{4}\)là sao ak