cho tam giac abc can tai a. tren tia doi cua tia bc va cb lay theo thu tu hai diem q va r sao cho bq=cr
a, chung minh aq=ar
b, goi h la trung diem cua bc . chung minh goc qah= goc rah
giup mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABF}=\widehat{ACE}\)
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABF}=\widehat{ACE}\)(cmt)
BF=CE(gt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: AF=AE(Hai cạnh tương ứng)
Xét ΔAFE có AF=AE(Cmt)
nên ΔAFE cân tại A(Định nghĩa tam giác cân)
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
Chứng minh:
a) Vì △ABC cân tại A ⇒ AB = AC ( tính chất t/g cân )
⇒ABCˆ=ACBˆ(tính chất t/g cân)⇒ABC^=ACB^(tính chất t/g cân)
Có : QBAˆ+ABCˆ=180o(kề bù)QBA^+ABC^=180o(kề bù)
⇒QBAˆ=180o−ABCˆ⇒QBA^=180o−ABC^
Có: ACBˆ+ACRˆ=180o(kề bù)ACB^+ACR^=180o(kề bù)
⇒ACRˆ=180o−ACBˆ⇒ACR^=180o−ACB^
Mà ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)
⇒ABQˆ=ACRˆ⇒ABQ^=ACR^
Xét △ABQ và △ACR có:
AB = AC ( cmt )
ABQˆ=ACRˆABQ^=ACR^ ( cmt )
BQ = CR ( gt )
⇒ △ABQ = △ACR ( c.g.c )
⇒ AQ = AR ( tương ứng )
b) Xét △ABH và △ACH có:
AB = AC ( cmt )
ABHˆ=ACHˆ(cmt)ABH^=ACH^(cmt)
BH = HC ( gt )
⇒△ABH = △ACH ( c.g.c )
⇒ AHBˆ=AHCˆ(tương ứng )AHB^=AHC^(tương ứng )
Mà AHBˆ+AHCˆ=180o(kề bù)AHB^+AHC^=180o(kề bù)
⇒AHBˆ=AHCˆ=90o⇒AHB^=AHC^=90o
Xét △AHQ vuông tại H và △AHR vuông tại H có:
AH - cạnh chung
AQ = AR ( cmt )
⇒ △AHQ = △AHR ( cgv - ch )
⇒QAHˆ=RAHˆ(tương ứng)
đúng 100% luôn
ko hieu