K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

TH1: AE là tia pgiac góc B'AC (AB' là tia đối của tia AB)

Xét B'AC là góc ngoài tgiac ABC tại đỉnh A => góc B'AC = góc B + góc C

Mà tgiac ABC cân tại A => góc B = góc C

=> Góc C = 1/2 góc B'AC

Lại có AE là tia pgiac góc B'AC => góc EAC = 1/2 góc B'AC

=> Góc C = góc EAC

Mà hai góc này so le trong => AE song song BC.

cmtt với trường hợp AE là tia pgiac góc C'AB (AC' là tia đối của tia AC)

Vậy ta có đpcm.

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...

12 tháng 1 2018

A B m 2 1

Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó

Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)

Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)

Lại có tam  giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)

Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)

Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau

Do  đó Am//BC . (dpcm)

26 tháng 2 2020

bọn óc chó

a: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường phân giác

b: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

a: Xét ΔBAK có

BE là đường cao

BE là đường trung tuyến

Do đó: ΔBAK cân tại B

b: Xét ΔBAD và ΔBKD có

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

 

9 tháng 5 2022

a. Xét Δ ABE và Δ KBE có:

^B1=^B2(BD là tia p/g)

^BEA=^KEB=90o

AE chung

=> ΔABE=ΔKBE(g.c.g)

=>AB=KB

=>ΔABK cân tại B

(xin lỗi mình ko biết phần b,c,d) ;-;

cho bạn cái hình nè :loading...

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>BA=BE và DA=DE

Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)

=>DA<DC

d: BA=BE

=>B nằm trên đường trung trực của AE(1)

DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD vuông góc với AE tại trung điểm của AE

=>BD\(\perp\)AE tại M và M là trung điểm của AE

CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM

=>\(\dfrac{1}{2}CG+CG=CM\)

=>\(CM=\dfrac{3}{2}CG\)

=>\(CG=\dfrac{2}{3}CM\)

 

Xét ΔEAC có

CM là đường trung tuyến

\(CG=\dfrac{2}{3}CM\)

Do đó: G là trọng tâm của ΔEAC

Xét ΔEAC có

G là trọng tâm

N là trung điểm của EC

Do đó: A,G,N thẳng hàng