cho tam giác ABC, đường cao AH. Trên tia đối của tia AH lấy điểm K sao cho AK=BC, ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại C. BE cắt AH tại I. CMR CE vuông góc với BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{BCE}=\widehat{BCA}+90^0\)
\(\widehat{KAC}=\widehat{HCA}+\widehat{H}=\widehat{BCA}+90^0\)
=> \(\widehat{BCE}=\widehat{KAC}\)
Xét \(\Delta BCE\)và \(\Delta KAC\)có :
BC = AK(gt)
\(\widehat{BCE}=\widehat{KAC}\)(cmt)
CE = AC(gt)
=> \(\Delta BCE=\Delta KAC\left(c.g.c\right)\)
=> \(\widehat{E_1}=\widehat{C_1}\)
Ta lại có : \(\widehat{C_1}+\widehat{C_2}=90^0\)nên \(\widehat{E_1}+\widehat{C_2}=90^0\)
=> BE \(\perp\)CK
b) Ta có \(\widehat{CAD}=\widehat{BCA}+90^0\)
\(\widehat{KAB}=\widehat{HBA}+\widehat{H}=\widehat{BCA}+90^0\)
=> \(\widehat{CAD}=\widehat{KAB}\)
Xét \(\Delta CAD\)và \(\Delta KAB\)có :
CA = KA(gt)
AD = AB(gt)
\(\widehat{CAD}=\widehat{KAB}\)(cmt)
=> \(\Delta CAD=\Delta KAB\left(c.g.c\right)\)
=> \(\widehat{D_1}=\widehat{B_1}\)
Ta lại có : \(\widehat{B_1}+\widehat{B_2}=90^0\)nên \(\widehat{D_1}+\widehat{B_2}=90^0\)
=> \(CD\perp BK\)
Ta lại có : \(AH\perp BC\)
Do đó \(\Delta KBC\)có KH,BE,CD là ba đường cao nên chung đồng quy
Vậy AH,BE,CD đồng quy