K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Các bn trả lời giúp mk với nha,có cả cách giải bài này nữa đó.

18 tháng 2 2020

\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

\(\Leftrightarrow M=1+\frac{1}{3-3^2+...+3^{19}-3^{20}}\)

Đặt A = 3 - 32 + ....+ 319 - 320

=> \(3A=3^2-3^3+...+3^{20}-3^{21}\) 

\(\Rightarrow3A+A=3-3^{21}\)

\(\Rightarrow4A=3-3^{21}\)

\(\Rightarrow A=\frac{3-3^{21}}{4}\)

\(\Rightarrow M=1+\frac{1}{\frac{3-3^{21}}{4}}\)

!!!! K chắc lm linh tinh thôi 

Sai thì sr nha 

1 tháng 8 2023

\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)

\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)

\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(2D=\left(3^{2023}-1\right)\)

\(D=\left(3^{2023}-1\right):2\)

3D=3+3^2+...+3^2023

=>2D=3^2023-1

=>\(D=\dfrac{3^{2023}-1}{2}\)

17 tháng 6 2018

15 tháng 10 2023

\(4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\cdot\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\)

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

1 tháng 3 2023

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

1 tháng 3 2023

`1+32+34+36?` Đề nào cho đấy?

18 tháng 10 2023

a) \(A=2+2^2+2^3+...+2^{2017}\)

\(2A=2^2+2^3+2^4+...+2^{2018}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)

\(A=2^{2018}-2\)

b) \(C=1+3^2+3^4+...+3^{2018}\)

\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)

\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)

\(8C=3^{2020}-1\)

\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)

\(Toru\)

16 tháng 8 2023

B = 1 + 32 + 34 + … + 32018

32.B = 32.( 1 + 32 + 34 + … + 32018)

9B = 32 + 34 + 36 + … + 32020

9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)

8B = 32020 – 1

B = (32020 – 1) : 8.

Vậy B = (32020 – 1) : 8.

16 tháng 8 2023

tick cho mink nhé (●'◡'●)