Cho ABC nhọn, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. a, Chứng minh AH BC. b, Chứng minh tứ giác BHCK là hình bình hành. c, Gọi I là trung điểm của AK, M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
28 tháng 7 2023
a: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
b: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
29 tháng 5 2018
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD
30 tháng 10 2023
a:
BH\(\perp\)AC
CK\(\perp\)AC
Do đó: BH//CK
CH\(\perp\)AB
BK\(\perp\)BA
DO đó: CH//BK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b,c: Q,F ở đâu vậy bạn?