cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của BO, AO. Lấy điểm F thuộc cạnh AB sao cho tia FM cắt BC tại E, FN cắt AD tại K. chứng minh BE+AK lớn hơn hoặc bằng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
+ Kẻ AH // FE // CI \(\left(H,I\in BD\right)\)
+ \(\Delta AOH=\Delta COI\left(g.c.g\right)\)
\(\Rightarrow OH=OI\)
\(\Rightarrow BH+BI=BH+BO+OI\)
\(=BH+OH+BO=2BO=4BM\)
+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có :
\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)
+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có :
\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)
+ Từ (1) và (2) \(\Rightarrow\)
\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)
Chúc bạn học tốt !!!
+ Từ đẳng thức \(\dfrac{BA}{BF}+\dfrac{BC}{BE}=4\) ta có thể viết được 1 đẳng thức
tương tự : \(\dfrac{AB}{AF}+\dfrac{AD}{AK}=4\)
\(\Rightarrow\dfrac{AB}{AF}+\dfrac{AD}{AK}+\dfrac{BA}{BF}+\dfrac{BC}{BE}=8\)
\(\Rightarrow AB\left(\dfrac{1}{AF}+\dfrac{1}{BF}\right)+BC\left(\dfrac{1}{AK}+\dfrac{1}{BE}\right)=8\)
+ Áp dụng bđt \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) ta có :
\(AB\left(\dfrac{1}{AF}+\dfrac{1}{BF}\right)+BC\left(\dfrac{1}{AK}+\dfrac{1}{BE}\right)\)
\(\ge AB\cdot\dfrac{4}{AF+BF}+BC\cdot\dfrac{4}{AK+BE}\)
\(\Rightarrow8\ge AB\cdot\dfrac{4}{AB}+4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow8\ge4+4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow4\ge4\cdot\dfrac{BC}{AK+BE}\)
\(\Rightarrow1\ge\dfrac{BC}{AK+BE}\) \(\Rightarrow AK+BE\ge BC\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}AF=BF\\AK=BE\end{matrix}\right.\)
\(\Leftrightarrow\) F là trung điểm của AB
* CM : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
+ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương
nên bđt đã cho luôn đúng
Qua A,C kẻ các đ/thẳng //EF cắt BD tại K,H
Xét tgiac AOK=COH ( OA=OC,AK//HC)
Suy ra OH=OK
Có AK//HC//EF theo Thales có
\(\frac{BA}{BF}=\frac{BK}{BM}\left(1\right),\frac{BC}{BE}=\frac{BH}{BM}\left(2\right)\)
Cộng (1) và (2) có \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BK+BH}{BM}=\frac{BO-OK+BO+OH}{BM}=\frac{2BO}{BM}=4\)
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
+ Kẻ AH // FE // CI \(\left(H,I\in BD\right)\)
+ ΔAOH = ΔCOI ( g.c.g )
=> OH = OI
=> BH + BI = BH + BO + OI
= BH + OH + BO = 2BO = 4BM
+ Xét ΔABH có AH // FM theo định lý Ta-lét ta có :
\(\dfrac{BA}{BF}=\dfrac{BH}{BM}\) (1)
+ Xét ΔBCI có CI // ME theo định lý Ta-lét ta có :
\(\dfrac{BC}{BE}=\dfrac{BI}{BM}\) (2)
+ Từ (1) và (2) => \(\dfrac{BA}{BF}+\dfrac{BC}{BE}=\dfrac{BH}{BM}+\dfrac{BI}{BM}=\dfrac{BH+BI}{BM}=\dfrac{4BM}{BM}=4\)
+) Kẻ: AJ // CI //EF; I; J thuộc BD và M thuộc EF
Xét \(\Delta\)BAJ có: FM // AJ
=> \(\frac{BA}{BF}=\frac{BJ}{BM}\)
Xét \(\Delta\)BCI có: ME // IC
=> \(\frac{BC}{BE}=\frac{BI}{BM}\)
Từ hai điều trên => \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BJ}{BM}+\frac{BI}{BM}=\frac{BI+BJ}{BM}\)(1)
Xét \(\Delta\)AJO và \(\Delta\)CIO có:
OA = OC ( ABCD là hình bình hành)
^AOJ = ^COI ( đối đỉnh)
^AJO = ^CIO ( AJ // CI , so le trong )
=> \(\Delta\)AJO = \(\Delta\)CIO ( g-c-g)
=> JO = IO
KHi đó BI + BJ = BO + OI + BO - JO = 2 BO + (IO - JO) = 2 BO = 2.2. BM = 4BM ( vì M là trung điểm BO )
=> BI + BJ = 4BM Thế vào (1)
=> \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{4BM}{BM}=4\)(2)
+) Kẻ BH // BG //FK với H; G thuộc AC
Chứng minh tương tự như trên ta suy ra: \(\frac{BA}{AF}+\frac{AD}{AK}=4\)(3)
Cộng (2) + (3) vế theo vế:
\(\frac{BA}{BF}+\frac{BC}{BE}+\frac{BA}{AF}+\frac{AD}{AK}=8\)mà AD = BC
=> \(AB\left(\frac{1}{BF}+\frac{1}{AF}\right)+BC\left(\frac{1}{BE}+\frac{1}{AK}\right)=8\)(4)
Mặt khác: \(\frac{1}{BF}+\frac{1}{AF}=\frac{1^2}{BF}+\frac{1^2}{AF}\ge\frac{\left(1+1\right)^2}{BF+AF}=\frac{4}{AB}\) và \(\frac{1}{BE}+\frac{1}{AK}\ge\frac{4}{BE+AK}\)
KHi đó: \(8\ge AB.\frac{4}{AB}+BC.\frac{4}{BE+AK}\)
<=> \(BE+AK\ge BC\)
Dấu "=" xảy ra <=> BF = AF và BE = AK
Hay F là trung điểm AB.