cho x,y>0 và x+y=1
cm 2/xy+3/x^2+y^2>=14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b)
Ta có :
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²)
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm).
1,x+y=9;xy=14
a)
Ta có:\(x+y=9\)
=>\(\left(x-y\right)^2+4xy=81\)
=>\(\left(x-y\right)^2=81-4xy=81-4.14=25\)
=>\(x-y=-5\)hoặc \(x-y=5\)
Vậy..
b)Ta có:\(x+y=9\)
=>\(x^2+y^2=81-2xy=81-2.14=53\)
Vậy...
Bài2:
Ta có:
\(x+y+z=0\)
=>\(x^2+y^2+z^2+2xy+2xz+2yz=0\)
=>\(x^2+y^2+z^2=0\)
Với mọi x;y;z thì \(x^2\)>=0;\(y^2\)>=0;\(z^2\)>=0
=>\(x^2+y^2+z^2\)>=0
Để \(x^2+y^2+z^2=0\)thì
\(x^2=0\);\(y^2=0\);\(z^2=0\)
=>\(x=y=z=0\left(đpcm\right)\)
xét BĐT \(2ab\le a^2+b^2=>\frac{a.b}{1}=a.b\le\frac{a^2+b^2}{2}\left(a,b>0\right)\)
Áp dụng , ta có
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+x^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\)
áp dụng BĐT bunhia có
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\left(\forall a,b,x,y>0\right)\)
Zậy
\(\left(x+y\right)^2=1\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
hay \(\frac{1}{2}\le x^2+y^2\)
zậy
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\left(dpcm\right)\)
dấu "=" xảy ra khi zà chỉ khi x=y=1/2
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$[(x+\frac{1}{x})^2+(y+\frac{1}{y})^2](1+1)\geq (x+\frac{1}{x}+y+\frac{1}{y})^2$
$\Leftrightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(x+y+\frac{1}{x}+\frac{1}{y})^2=\frac{1}{2}(1+\frac{1}{xy})^2$
Mà:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$ theo BĐT Cô-si
$\Rightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(1+\frac{1}{\frac{1}{4}})^2=\frac{25}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Từ giải thiết, ta suy ra được những điều sau :
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)
\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\) (1)
Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\)
\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)
\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)
\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)
\(=x^2y^2+\left(x+y\right)^2+2\)
\(=x^2y^2+3\) (2)
Từ (1) và (2) suy ra :
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
\(=0\)(ĐPCM)
Biến đổi
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)
(do x+y=1 => y-1=-x và x-1=-y)
\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)
=> ĐPCM
Sửa đề: \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\) với x, y > 0 và x + y = 1.
\(VT-VP=\frac{\left(x-y\right)^2\left[2\left(x-y\right)^2+xy\right]}{xy\left(x^2+y^2\right)}\ge0\)
Tổng quát hóa: Cho \(xy\left(2a-b\right)>0\) và x + y = t (t là hằng số)
Chứng minh: \(\frac{a}{xy}+\frac{b}{x^2+y^2}\ge\frac{4a+2b}{t^2}\)
Xét hiệu: \(VT-VP=\frac{\left(x-y\right)^2\left[a\left(x-y\right)^2+\left(2a-b\right)xy\right]}{xy\left(x+y\right)^2\left(x^2+y^2\right)}\)
P/s: Bài toán trên là trường hợp đặt biệt của bài bên dưới khi a= 2;b=3;t=1