K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

\(x^2-3xy+2y^2=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

Thay xuống dưới:

- Với \(x=y\Rightarrow3y+y=6\Rightarrow y=\frac{3}{2}\Rightarrow x=\frac{3}{2}\)

- Với \(x=2y\Rightarrow6y+y=6\Rightarrow y=\frac{6}{7}\Rightarrow x=\frac{12}{7}\)

19 tháng 2 2020

Thank you

NM
20 tháng 3 2022

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

Chọn  B

21 tháng 1 2022

B

20 tháng 1 2022

B.2y2+3xy-x2

NV
7 tháng 2 2021

\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))

\(\Leftrightarrow x=2y\)

\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

5 tháng 9 2020

\(\hept{\begin{cases}xy^2-3xy+3x-2y+2=0\\x^2+y^2+xy-7x-6y+14=0\end{cases}}\)

5 tháng 9 2020

HPT \(\Leftrightarrow\hept{\begin{cases}x\left(y^2-4y+4\right)+xy-x-2y+2=0\\\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+xy-2x-2y+4-x+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(y-2\right)^2+\left(x-2\right)\left(y-2\right)+\left(x-2\right)=0\\\left(x-2\right)^2+\left(y-2\right)^2+\left(x-2\right)\left(y-2\right)-\left(x-2\right)=0\end{cases}}\)

Đặt a = x - 2 ; b = y - 2 ta có :

\(\hept{\begin{cases}\left(a+2\right)b^2+ab+a=0\\a^2+b^2+ab-a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(b^2+b+1\right)=-2b^2\\a=a^2+b^2+ab\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{-2b^2}{b^2+b+1}\le0\forall b\\a=a^2+b^2+ab\ge0\forall ab\end{cases}}\)

\(\Rightarrow a=0\Rightarrow b=0\Rightarrow x=y=2\left(TM\right)\)