K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

f(5)=25a+5b+c chia hết cho 9;f(9)=81a+9b+c chia hết cho 5

ta có:f(104)=10816a+104b+c=(81a+9b+c)+(10735a+95b) chia hết cho 5

=(25a+5b+c)+(10791a+99b) chia hết cho 9

Mà (5,9)=1

Nên f(104) chia hết cho 45(đpcm)

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

11 tháng 5 2016

Sorry, I am 12 years olm and I don't learn so I don't know

11 tháng 5 2016

sao lại là f(104) nhỉ?

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 \(⋮\) (m – n)

Ta có : f(x)=ax2-bx+c

=> Tính chất: f (m) – f(n) \(⋮\) ( m – n)

Ta có:

 f(104) – f(9) \(⋮\)105

=> f(104) – f(9) \(⋮\)5

=> f(104) \(⋮\)5

Mặt khác:

f(104) – f(5) \(⋮\)99

=> f(104) – f(5) \(⋮\)9

=> f(104) \(⋮\)9

Vậy f(104) \(⋮\)(5.9) = 45 

1 tháng 10 2019

tự hỏi tự trả lời là sao vậy bạn