giải pt:x^3+5x^2+3x-9=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X1 + X2 = - 5, X1.X2 = 3m - 1 (Viét) (1) ( bạn tự tìm Điều kiện để phương trình có 2 nghiệm nha)
pt <=>(x1-x2).[(x1+x2)^2 - x1.x2] + 3x1.x2 = 75 (2)
thay (1) vào (2) ta được : (x1-x2)(26-3m) + 3(3m-1) = 75
<=> (x1-x2)(26-3m) = 75 - 3(3m-1) <=> (x1-x2)(26-3m) = 78-9m <=> (x1-x2) = (78-9m) / ((26-3m)
<=> x1-x2 = 3
kết hợp với Điều kiện (1) bạn sẽ có hệ: x1+x2 = = -5
x1- x2 = 3
giải ra được x1 và x2 => m = ? (nhớ kiểm tra Điều kiện delta > 0 )
mấy cái này bạn tự làm ,
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c
\(2.\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\\ \Leftrightarrow x^2+5x+3x+15+3x^2-4x+9x-12=0\\ \Leftrightarrow x^2+3x^2+5x+3x-4x+9x+15-12=0\\\Leftrightarrow 4x^2+13x+3=0\\\Leftrightarrow 4\left(x^2+\frac{13}{4}x+\frac{3}{4}\right)=0\\\Leftrightarrow x^2+\frac{13}{4}x+\frac{3}{4}=0\\ \Leftrightarrow x^2+\frac{1}{4}x+3x+\frac{3}{4}=0\\\Leftrightarrow x\left(x+\frac{1}{4}\right)+3\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x+\frac{1}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là: \(S=\left\{-3;-\frac{1}{4}\right\}\)
\(3.\left(x+6\right)\left(3x-1\right)+x+6=0\\ \Leftrightarrow3x^2-x+18x-6+x+6=0\\ \Leftrightarrow3x^2+18x=0\\ \Leftrightarrow3x\left(x+6\right)=0\\\Leftrightarrow \left[{}\begin{matrix}3x=0\\x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0;-6\right\}\)
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9=0\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-3\right\}\)
Giải phương trình : \(x^3+5x^2+3x-9=0\)
\(\leftrightarrow\left(x^3+3x^2\right)+\left(2x^2+6x\right)-\left(3x+9\right)=0\)
\(\leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\leftrightarrow\left(x+3\right)\left[\left(x^2-x\right)+\left(3x-3\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+3\left(x-1\right)\right]=0\)
\(\leftrightarrow\left(x+3\right)\left(x+3\right)\left(x-1\right)=0\)
\(\leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy phương trình có nghiệm là x=1,x=-3
Chúc bn hok tốt nhưng nhớ cho mik nghen!! : 3