tim cap so nguyen x,y
x+y+xy=2
b, tim gtln cua bieu thuc
q=\(\frac{27-2x}{12-x}\)(x nguyen)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>-3
b: \(Q=\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\dfrac{1}{x+3}\right)\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{2x^2-2}{x^2-1}\cdot\dfrac{1}{x^2-3x+9}=\dfrac{2}{x^2-3x+9}\)
\(a,\) Ta có \(y=\frac{5x+9}{x+3}\)
Để \(y\) nhận giá trị nguyên thì : \(5x+9⋮x+3\)
\(\Rightarrow5\left(x+3\right)+9-15⋮x+3\)
\(\Rightarrow5\left(x+3\right)-6⋮x+3\)
\(\Rightarrow-6⋮x+3\)
\(\Rightarrow6⋮x+3\)
\(\Rightarrow x+3\inƯ_{\left(6\right)}\)
\(\Rightarrow x+3=\left(-6,-3,-2,-1,1,2,3,6\right)\) Máy tớ ko viết được ngoặc khép thông cảm nha
\(\Rightarrow x=\left(-9,-6,-5,-4,-2,-1,0,3\right)\)
\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN
=> 12 - x là số nguyên dương nhỏ nhất
=> 12 - x = 1 => x = 11
Vậy GTLN của hàm số đó là 5 tại x = 11
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN
=> 12 - x là số nguyên âm lớn nhất
=> 12 - x = - 1 => x = 13
Vậy \(y_{min}=-1\Leftrightarrow x=13\)