K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

ABCtx

a) Xét  △AMB và  △AMC có:

    AB = AC ( gt)

    AM chung

    BM = MC (gt)

\(\Rightarrow\) △AMB = △AMC (c.c.c)

b) Ta có : △AMB =  △AMC

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)

\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)

c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)

   Mà       \(\widehat{BMA}=\widehat{CMA}\) (△AMB =  △AMC)

\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\) AM ⊥ BC (ĐPCM)

d) Gọi tia đối của tia AC là tia Ax.

Vì At là tia phân giác \(\widehat{xAB}\)

\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)

Vì △ABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)

\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)

\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)

\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)At // BC (ĐPCM)

16 tháng 11 2021

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

5 tháng 1 2019

A B C D M

5 tháng 1 2019

Hình vẽ đó ,từ làm cho quen đi bn.

Lưu ý:Hình vẽ chỉ mang tính tượng trưng,không chắc là đúng số đo

23 tháng 1 2017

A B C M N O

a) xét tam giác vuông NCA và tam giác vuông MAC có

AC là cạnh huyền chung

góc A  = góc C ( tam giác ABC cân tại B )

do đó tam giác NCA = tam giác MAC (cạnh huyền - góc nhọn )

suy ra NA = MC ( 2 cạnh tương ứng )

ta có BA = BC ( tam giác cân )

 NA = MC (cmt)

suy ra BA-NA=BC-MC ( vì N nằm giữa B và A , M nằm giữa B và C )

hay BN = BM 

xét \(\Delta BNO\)và \(\Delta BMO\)có 

BO là cạnh huyền chung

 BN = BM (cmt)

do đó \(\Delta BNO=\Delta BMO\)( cạnh huyền - cạnh góc vuông )

suy ra \(\widehat{NBO}=\widehat{MBO}\)( 2 góc tương ứng )

mà tia BO nằm giữa 2 tia BA và BC 

suy ra tia Bo là phân giác góc ABC

28 tháng 10 2023

a: Sửa đề: ΔABM=ΔACM

Xét ΔABM và ΔACM có

AB=AC

MB=MC

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>AM là phân giác của \(\widehat{BAC}\)

c: AB=AC

MB=MC

Do đó: AM là đường trung trực của BC

=>AM\(\perp\)BC