Cho hình bình hành ABCD có DC=2AD, từ trung điểm I của CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng:
\(a,\frac{DE}{HE}=\frac{DA}{HA}\)
\(b,\frac{1}{IH^2}=\frac{1}{IA^2}+\frac{1}{IB^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + CD = 2AD => AD = DI
=> ΔADI cân tại D ⇒DAIˆ=AIDˆ
+ AB // CD ⇒IAHˆ=AIDˆ⇒IAHˆ=IADˆ^
+ ΔADH có đg phân giác AE
⇒DEHE=ADAH⇒
b) + HI ⊥ AB => HI ⊥ CD
+ Lm tương tự câu a) ta cm đc : IBHˆ=IBCˆ
+ AD // BC ⇒BADˆ+ABCˆ=180o
⇒IABˆ+IBAˆ=90o⇒AIBˆ=90o
+ ΔABI vuông tại I, đg cao IH
⇒1HI2=1AI2+1BI2( theo hệ thức lượng trog Δ vuông )
a: Xét tứ giác ANMD có
AN//MD
AN=MD
AN=AD
=>ANMD là hình thoi
Xét tứ giác BCMN co
BN//CM
BN=CM
BN=BC
=>BCMN là hình thoi
b: Xét ΔNCD có
NM là trung tuyến
NM=CD/2
=>ΔNCD vuông tại N
c: Xét ΔAHD vuông tại H và ΔCND vuông tại N có
góc ADH=góc CDN
=>ΔAHD đồng dạng với ΔCND