K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

Cách đơn giản nhất: tính trực tiếp

\(u_2=\frac{1}{3}\left(u_1+1\right)=1\) ; \(u_3=\frac{1}{3}\left(u_2+1\right)=\frac{2}{3}\) ; \(u_4=\frac{1}{3}\left(u_3+1\right)=\frac{4}{9}\)

Còn nếu rảnh thì bạn có thể tìm công thức tổng quát của \(u_n\), nhưng chỉ nên áp dụng khi người ta bắt tính với \(n\) lớn kiểu \(u_{40}\) chẳng hạn

16 tháng 2 2020

U4=\(\frac{5}{9}\)chứ b

16 tháng 6 2019

Chọn D.

Vì un+1 = un.e nên dễ thấy dãy số (un) là cấp số nhân có công bội q = e

ln2u6 – (ln u8 +ln u4) + 1 = 0 ln2u6 – (ln u8u4) + 1 = 0 (ln u6 – 1)2 = 0

ln u6 = 1 u6 = e u1 = e-4

17 tháng 12 2016

đề sai nhỉ, sửa: \(U_n=\frac{\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n}{2\sqrt{3}}\)

a/ thay n = 1 => U1=1 (DÙNG CALC NHÉ)

       n=2 => U2=26

      n=3 => U3= 510

tương tự : U4 =8944; U5=147884; U6=2360280; U7=368185536; U8=565475456; U9=8590484880; U10=129483681183,992

b/ công thức tổng quát có dạng  Un+1 = aU+ bUn-1 

 n=2  => U3 = aU2 + bU1  => 510 = 26a + b 

n=3 => u4 = aU3 + bU2   => 8944 = 510a + 26b

giải HPT  => a = 26;  b= -166

vậy công thức là: Un+1 = 26U- 166Un-1

NV
1 tháng 3 2020

1. Bạn ghi lại đề, mẫu số ko rõ

2. \(=lim\left[-8n^6\left(1-\frac{4}{n^2}\right)^3\right]=-\infty.1=-\infty\)

3. Dãy số là CSC với \(\left\{{}\begin{matrix}u_1=-1\\d=3\end{matrix}\right.\) \(\Rightarrow u_n=-1+\left(n-1\right)3=3n-4\)

\(\Rightarrow lim\frac{3n-4}{5n+2020}=lim\frac{3-\frac{4}{n}}{5+\frac{2020}{n}}=\frac{3}{5}\)

4.

\(u_{n+1}=\frac{1}{2}u_n+\frac{3}{2}\Rightarrow u_{n+1}-3=\frac{1}{2}\left(u_n-3\right)\)

Đặt \(v_n=u_n-3\Rightarrow\left\{{}\begin{matrix}v_1=-2\\v_{n+1}=\frac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\frac{1}{2}\Rightarrow v_n=-2.\frac{1}{2^{n-1}}\Rightarrow u_n=v_n+3=-\frac{1}{2^{n-2}}+3\)

\(\Rightarrow lim\left(u_n\right)=lim\left[-\frac{1}{2^{n-2}}+3\right]=3\)

5.

\(u_{n+1}=u_n+\frac{1}{2^n}\Rightarrow u_{n+1}+\frac{2}{2^{n+1}}=u_n+\frac{2}{2^n}\)

Đặt \(v_n=u_n+\frac{2}{2^n}\Rightarrow\left\{{}\begin{matrix}v_1=3\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=...=v_1=3\Rightarrow u_n=3-\frac{2}{2^n}\)

\(\Rightarrow u_{n-2}=3-\frac{2}{2^{n-2}}\Rightarrow lim\left(u_{n-2}\right)=lim\left(3-\frac{2}{2^{n-2}}\right)=3\)

Tính \(u_{n-2}\) hay \(u_n-2\) nhỉ? Ko dịch nổi nên đoán đại

16 tháng 12 2017

u4 = u1.q3

Giải bài 2 trang 103 sgk Đại số 11 | Để học tốt Toán 11