cho biểu thức P=(\(\frac{x-3\sqrt{x}}{x-6\sqrt{x}+9}\)-(\(\frac{2\sqrt{x}-1}{x-3\sqrt{x}}\)).\(\frac{x-9}{\sqrt{x}+3}\)
Tìm điều kiện xác định và rút gọn biểu thức P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{6\sqrt{x}}{9-x}\)
giá trị của biểu thức P được xác định khi
\(\hept{\begin{cases}\sqrt{x}+3\ne0\\\sqrt{x}-3\ne0\\9-x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}\forall x\\x\ne9\end{cases}}\Rightarrow x\ne9\)
vậy ĐKXĐ của P là \(x\ne9\)
Rút gọn
\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(3+\sqrt{x}\right)}{x-9}-\frac{6\sqrt{x}}{x-9}\)
\(P=\frac{2x-6\sqrt{x}}{x-9}+\frac{3\sqrt{x}+x}{x-9}-\frac{6\sqrt{x}}{x-9}\)
\(P=\frac{2x-6\sqrt{x}+3\sqrt{x}+x-6\sqrt{x}}{x-9}\)
\(P=\frac{3x-9\sqrt{x}}{x-9}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+3}\)
ĐKXĐ: \(x>0\),\(x\ne3\)
\(P=\left(\frac{x-3\sqrt{x}}{x-6\sqrt{x}+9}-\frac{2\sqrt{x}-1}{x-3\sqrt{x}}\right).\frac{x-9}{\sqrt{x}+3}=\left[\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)^2}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}\right].\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\left[\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}\right].\left(\sqrt{x}-3\right)=\frac{x-2\sqrt{x}+1}{\sqrt{x}}\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia