Cho hàm số f(x) ; xác định với mọi \(x\in R\) thỏa mãn : \(f\left(x\right)+3.f\left(\frac{1}{x}\right)=x^2\)
Tính f(2).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
f ' x < 0 ⇔ x < 0 do đó hàm số nghịch biến trên − ∞ ; 0
a) Hàm số f(x) là hàm hợp của hàm số \(y = {a^x}\)
b) \(f'(x) = \left( {{2^{3x + 2}}} \right)' = \left( {3x + 2} \right)'{.2^{3x + 2}}.\ln 2 = {3.2^{3x + 2}}.\ln 2\)
Với x=2
\(\implies\) \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\left(1\right)\)
Với x=\(\frac{1}{2}\)
\(\implies\) \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
\(\implies\)\(3.f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\left(2\right)\)
Lấy (2) - (1) vế với vế ta được:
\(3f\left(\frac{1}{2}\right)+9f\left(2\right)-f\left(2\right)-3.f\left(\frac{1}{2}\right)=-\frac{13}{4}\)
\(\implies\) \(8f\left(2\right)=-\frac{13}{4}\)
\(\implies\)\(f\left(2\right)=-\frac{18}{32}\)