K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Bài này mọi người đăng suốt mà >: vào câu hỏi tương tụ cũng có bài y hệt -.-

a Xét tam giác AMB và tam giác DMC 

AM=DM (gt)

BM=CM (gt)

AMB^=DMC^ (đối đỉnh)

=>tam giác AMB = tam giác DMC (c-g-c)

=>ABM^=DMC^ (hai góc tương ứng)

b, Theo câu a ta có : ABM^=DMC^

Do 2 góc này ở vị trí sole trong và bằng nhau

=>AB//DC 

C,Xét tam giác ABM và tam giác ACM 

AB = AC (gt)

AM cạnh chung

BM=CM (gt)

=>Tam giác ABM = tam giác ACM (c-c-c)

=>AMB^=AMC^

Do AMB^+AMC^=180*

=> AMB^=AMC^=180*/2=90* (đpcm)

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

21 tháng 12 2023

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: ta có: ΔABM=ΔDCM

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
c: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔMEB=ΔMFC

=>ME=MF

mà M nằm giữa E và F

nên M là trung điểm của EF

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có; ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

c: Xét ΔNAB và ΔNCE có

NA=NC

\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)

NB=NE

Do đó: ΔNAB=ΔNCE

=>AB=CE 

Ta có: ΔNAB=ΔNCE

=>\(\widehat{NAB}=\widehat{NCE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CE,CD có điểm chung là C

Do đó: E,C,D thẳng hàng

Ta có: EC=AB

CD=AB

Do đó: EC=CD
mà E,C,D thẳng hàng

nên C là trung điểm của ED

27 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=DM\\BM=MC\\\widehat{AMB}=\widehat{DMC}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\\ b,\Delta ABM=\Delta DCM\Rightarrow\widehat{B}=\widehat{MCD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB\text{//}CD\\ c,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\\ \Rightarrow AM\text{ là p/g }\widehat{A}\\ d,\Delta AMB=\Delta AMC\Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

Mà M là trung điểm BC nên AM là trung trực BC

27 tháng 12 2021

còn câu d) nx bn

10 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC

27 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC