Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2-2x+0,5=0\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4.2.0,5=4-4=0\)
Áp dụng công thức nghiệm, phương trình có nghiệm kép là :
\(x_1=x_2=\frac{-b}{2a}=\frac{-\left(-2\right)}{2.2}=\frac{2}{4}=\frac{1}{2}\)
Vậy phương trình có nghiệm kép \(x=\frac{1}{2}\)
b) \(x^2+2\sqrt{2}x+2=0\)
\(\Delta=b^2-4ac=\left(2\sqrt{2}\right)^2-4.1.2=8-8=0\)
Áp dụng công thức nghiệm, phương trình có nghiệm kép là :
\(x_1=x_2=\frac{-b}{2a}=\frac{-2\sqrt{2}}{1.2}=\frac{-2\sqrt{2}}{2}=-\sqrt{2}\)
Vậy phương trình có nghiệm kép \(x=-\sqrt{2}\)
c) \(x^2-\sqrt{3}x+1=0\)
\(\Delta=b^2-4ac=\left(-\sqrt{3}\right)^2-4.1.1=3-4=-1< 0\)Vậy phương trình vô nghiệm
d) \(\sqrt{2}\left(x^2-2\right)=4x\)
\(\Leftrightarrow\sqrt{2}x^2-2\sqrt{2}-4x=0\)
\(\Leftrightarrow\sqrt{2}x^2-4x-2\sqrt{2}=0\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4.\sqrt{2}.\left(-2\sqrt{2}\right)=4+16=20>0\)
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-4\right)+\sqrt{20}}{2.\sqrt{2}}=\frac{4+2\sqrt{5}}{2\sqrt{2}}=\frac{2\left(2+\sqrt{5}\right)}{2\sqrt{2}}=\frac{\sqrt{2}\left(2+\sqrt{5}\right)}{2}=\frac{2\sqrt{2}+\sqrt{10}}{2}\)
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-4\right)-\sqrt{20}}{2.\sqrt{2}}=\frac{4-2\sqrt{5}}{2\sqrt{2}}=\frac{2\left(2-\sqrt{5}\right)}{2\sqrt{2}}=\frac{\sqrt{2}\left(2-\sqrt{5}\right)}{2}=\frac{2\sqrt{2}-\sqrt{10}}{2}\)
Vậy phương trình có 2 nghiệm là \(\frac{2\sqrt{2}+10}{2};\frac{2\sqrt{2}-10}{2}\)
\(a,x^2-10x=-25\)
\(< =>x^2-10x+25=0\)
\(< =>\left(x-5\right)^2=0< =>x=5\)
b, \(4x^2-4x=-1\)
\(< =>4x^2-4x+1=0\)
\(< =>\left(2x-1\right)^2=0< =>x=\frac{1}{2}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: (2,3x-6,9)(0,1x+2)=0
=>2,3x-6,9=0 hoặc 0,1x+2=0
=>x=3 hoặc x=-20
c: =>(x-3)(2x+5)=0
=>x-3=0 hoặc 2x+5=0
=>x=3 hoặc x=-5/2
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
a) \(3\left(x-1\right)=5x+8\)
\(\Leftrightarrow\)\(3x-3=5x+8\)
\(\Leftrightarrow\)\(2x=-11\)
\(\Leftrightarrow\)\(x=-5,5\)
Vậy...
b) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy..
c) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\)\(3x\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy...
d) \(2x^3+3x^3-5x=0\)
\(\Leftrightarrow\)\(5x^3-5x=0\)
\(\Leftrightarrow\)\(5x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)hoặc \(x-1=0\)hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=1\) hoặc \(x=-1\)
Vậy...
p/s: chỗ "hoặc" bn đưa về kí hiệu "[" cho mk nhé
e) \(x^2+2x-15=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy...
a, Ta có :\(2.x^2-2.x+0,5=0\)
\(\Leftrightarrow4.x^2-4.x+1=0\) (Nhân mỗi vế với 2)
\(\Leftrightarrow\) \(\left(2.x-1\right)^2=0\)
\(\Leftrightarrow2.x-1=0\)
\(\Leftrightarrow2.x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
STUDY WELL!