xét dấu các biểu thức sau
a)f(x)=\(\frac{-4}{3x+1}-\frac{3}{2-x}\)
b)f(x)=4x2_1
c)f(x)=\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(f\left(x\right)=\frac{\left(x^2-3x\right)^2-2\left(x^2-3x\right)-8}{x^2-3x}=\frac{\left(x^2-3x-4\right)\left(x^2-3x+2\right)}{x^2-3x}\)
\(f\left(x\right)=\frac{\left(x+1\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)}{x\left(x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{0;3\right\}\)
\(f\left(x\right)=0\Rightarrow x=\left\{-1;1;2;4\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -1\\0< x< 1\\2< x< 3\\x>4\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-1< x< 0\\1< x< 2\\3< x< 4\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{2x-2\left(x+1\right)-x\left(x+1\right)}{2x\left(x+1\right)}=\frac{-x^2-x-2}{2x\left(x+1\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{-1;0\right\}\)
\(f\left(x\right)>0\Rightarrow-1< x< 0\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -1\\x>0\end{matrix}\right.\)
3.
\(f\left(x\right)=\frac{x^2-4x+3+\left(x-1\right)\left(3-2x\right)}{3-2x}=\frac{-x^2+x}{3-2x}=\frac{x\left(1-x\right)}{3-2x}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\frac{3}{2}\)
\(f\left(x\right)=0\Rightarrow x=\left\{0;1\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}0< x< 1\\x>\frac{3}{2}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< 0\\1< x< \frac{3}{2}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(2-x\right)\left(3x+4\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\pm\sqrt{3};-\frac{4}{3};2\right\}\)
\(f\left(x\right)=0\Rightarrow x=\pm1\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}-\sqrt{3}< x< -\frac{4}{3}\\-1< x< 1\\\sqrt{3}< x< 2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -\sqrt{3}\\-\frac{4}{3}< x< -1\\1< x< \sqrt{3}\\x>2\end{matrix}\right.\)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)
\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)
F(x) =0 khi x={-2,0,1}
F(x) > 0 khi x<1 và khác -2 và 0
f(x) <0 khi x> 1
Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)
tương tự a) dấu của tử phụ thuộc (x-1)(x-2)
Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)
Phần hỗ trợ Lập bảng đây khó thao tác
=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}
Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0
Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định
Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)
khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0
khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0
a)\(F\left(x\right)>0\) khi x thuộc \(\left(\frac{-9}{8};\frac{-1}{3}\right)\cup\left(2;-\infty\right)\)
b) ta có công thức ax2+bx+c=0 thì có a(x-x1)(x-x2)
với x là nghiệm của phương trình trên
vây f(x)>0 khi x thuộc\(\left(-\infty;\frac{-1}{2}\right)\cup\left(\frac{1}{2};+\infty\right)\)
c)f(x)>0 khi x thuộc \(\left(-2;\frac{-1}{2}\right)\cup\left(1:+\infty\right)\)
a) f (x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
= \(\frac{-4\left(2-x\right)-3\left(3x+1\right)}{\left(3x+1\right)\left(2-x\right)}=\frac{-8+4-9x-3}{\left(3x+1\right)\left(2-x\right)}\) = \(\frac{-5x-11}{\left(3x+1\right)\left(2-x\right)}\)
BXD : x \(\frac{-11}{5}\) \(\frac{-1}{3}\) 2
f(x) - 0 + \(||\) - \(||\) +
Vậy f(x) < 0 <=> x ∈ ( -∞ ; \(\frac{-11}{5}\) ) U (\(\frac{-1}{3}\) ; 2)
f(x) > 0 <=> x ∈ ( \(\frac{-11}{5}\); \(\frac{-1}{3}\) ) U (2 ; +∞)
b) f(x) = 4x2 -1
f(x) = (2x-1)(2x+1)
2x-1 =0 <=> x = \(\frac{1}{2}\)
2x +1 =0 <=> x= \(\frac{-1}{2}\)
BXD : x \(\frac{-1}{2}\) \(\frac{1}{2}\)
f(x) + 0 - 0 +
f(x) >0 khi x ∈ ( -∞ ; \(\frac{-1}{2}\)) U ( \(\frac{1}{2}\); +∞)
f(x) <0 khi x ∈ ( \(\frac{-1}{2}\); \(\frac{1}{2}\))
c) f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
2x +1 = 0 <=> x= \(\frac{-1}{2}\)
x-1 =0 <=> x = 1
x+2 =0 <=> x = -2
BXD : x -2 \(\frac{-1}{2}\) 1
f(x) + \(||\) - 0 + \(||\) -
Vậy f(x) >0 khi x ∈ ( -∞ ;-2) U ( \(\frac{-1}{2}\) ; 1)
f(x)<0 khi x ∈ ( -2 ; \(\frac{-1}{2}\)) U ( 1; +∞)