K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

A B E D C F

Lấy điểm F sao cho ^BCF = 90o  => ^ACF = ^ABC = 19o => ^DCA = ^FCA = 19o 

Có ^ECF + ^ECB  = ^BCF = 90o 

^CFE + ^EBC = 180o - ^BCF = 90o 

Mà ^ECB = ^EBC = 19 (1)

=> ^ECF = ^EFC => \(\Delta\)FEC cân => FE = EC 

(1) => => \(\Delta\)EBC cân => EB = EC 

=> FE = EB 

=> FE = \(\frac{1}{2}\)BF 

=> AE + AF = \(\frac{1}{2}\)( BD + DF ) 

Mặt khác \(\Delta\)DCF có: ^DCA = ^ACF (= 19o) do đó CA phân giác ^DCF  mà CA là đường cao \(\Delta\)DCF

=> \(\Delta\)DCF cân  tại C => A là trung điểm DF => DF = 2AF

=> AE + AF = \(\frac{1}{2}\)BD + \(\frac{1}{2}\)DF 

=> AE + AF = \(\frac{1}{2}\)BD + AF 

=> AE = \(\frac{1}{2}\)BD 

=> BD / AE = 2

19 tháng 4 2015

 1,a, cm: tam giác BEC và tg BDC(c.g.c0

b, cm : tg ABE= tg ACD(c,g.c)

c, cm: BK=KC ( cm: tg BKD= tg CED)

25 tháng 3 2017

CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM

a, Tính BC

b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC

c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC

4 tháng 5 2017

CD chứ bạn

4 tháng 5 2017

ban giup nhah len nhe dc ko

29 tháng 7 2017

ahihi DồKết quả hình ảnh cho ban làm rớt nà     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.a.Cm DE//BCb.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=ENc.Cm tam giác AMN là tam giác când.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt...
Đọc tiếp

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.

a.Cm DE//BC

b.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=EN

c.Cm tam giác AMN là tam giác cân

d.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.

2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M .Trên tia đối của tia AM lấy điểm N sao cho AN=BM.CMR:

a. góc AMC=gócBAC

b.Tam giác ABM =tam giác CAN 

c.Tam giác MNC vuông góc cân ở C 

3.Cho đoạn thẳng AB và điểm C nằm giữa A và  B.Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE ,Gọi M,N lần lượt  là trung điểm của AE và BD .CMR:

a. AE=BD

b. Tam giác CME=tam giác CNB

c. Tam giác MNE là tam giác đều

4.Cho tam giác ABC vuông cân tại A .Trên cạnh AB lấy điểm D,trên cạnh AC lấy điểm E sao cho AD=AE.Các đoạn thẳng vuông goác kẻ từ A và E với CD cắt BC ở G và H .Đoạn thẳng EH và AB cắt nhau ở M.Đoạn thẳng kẻ từ A vuông góc với BC cắt MH ở I.Cm:

a.Tam giác ACD=tam giác AME

b.Tam giác AGB=tam giác MIA

c. BG=GH

5.Cho tam giác ABC cân  ở A,trên cạnh BC lấy điểm D ,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường vuông góc với BC cắt ở A ,từ E kẻ đường vuông góc với BC cắt AC ở N.Cm:

a.MD=NE

b. MN cắt DE ở I .Cm I là trung điểm của DE.

c. TừC kẻ đường vuông góc với AC ,từ B kẻ đường vuông góc với AB ,chúng cắt nhau tại O .Cm AO là đường trung trực của BC.

 

 

giúp mk vs nha,mk cảm ơn nhju hjhj

 

 

1
20 tháng 7 2018

4,

a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A. 
AD = AE (gt) 
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc) 
=> tgiácACD = tgiácAME (g.c.g) 
b/ ta có: AG//EH (cùng vuông góc với CD) 
=> AG // IH 
mà gt => AI // GH 
vậy AGHI là hình bình hành 
=>AG = IH. 
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME 
=> AM = AC = AB 
=> A là trung điểm BM, mà AI // BC 
=> AI là đường trung bình của tgiác MBH 
=> I là trung điểm của MH. 
vậy: IM = IH = AG 
có: AM = AB 
góc BAG = góc AMI (so le trong) 
=> tgiác AGB = tgiác MIA ( c.g.c) 
c/ có AG//MH, A là trung điểm BM 
=> AG là đường trung bình của tgiácBMH 
=> G là trung điểm BH 
hay BG = GH.

19 tháng 7 2019

Xét \(\Delta BAD\)(\(\widehat{A}=90^o\))và \(\Delta BHD\)(\(\widehat{H}=90^o\))có:

\(\widehat{ABD=\widehat{HBD}}\)(gt)

BD: cạnh chung

=> \(\Delta ABD=\Delta HBD\left(CH-GN\right)\)

=> AB=BH; AD=DC (2 cạnh t/ứng)

và \(\widehat{BDA=\widehat{BDC}}\)(2 góc t/ứng)

Xét \(\Delta ABH\)cân tại B(vì AB=BH[cmt]) có : BD là đường p.g

=> B là điểm thuộc đường trung trực AH (1)

Xét \(\Delta ADH\)cân tại D(vì AD=DH(cmt)) có: DB là đường p.g ( vì \(\widehat{BDA=\widehat{BDC}}\))

=> D là điểm thuộc đường trung trực AH (2)

Từ (1) và (2)=> BD là trung trực của đt AH

19 tháng 7 2019

B F A E K D C H I

+ Xét \(\Delta ABD\)vuông tại A và \(\Delta HBD\)vuông tại H ( vì \(DH\perp BC\))

Có : BD là cạnh chung

        \(\widehat{ABD}=\widehat{HBD}\)( Vì BD là p/g của góc B)      => \(\Delta ABD=\Delta HBD\)( canh huyền-góc nhọn)

                                                                                       => AB = HB

+ Gọi I là giao điểm của BD và AH

CM đc : \(\Delta ABI=\Delta HBI\)(c-g-c)

=> IA = IH ( 2 cạnh tương ứng)    (1)

và \(\widehat{BIA}=\widehat{BIH}\)( 2 góc t.ư)

Vì \(\widehat{BIA}=\widehat{BIH};\widehat{BIA}+\widehat{BIH}=180^o\)( 2 góc k.bù)

=> \(\widehat{BIA}=\widehat{BIH}=\frac{180^o}{2}=90^o\Rightarrow BD\perp AH\)tại I (2)

Từ (1),(2) => BD là trung trực của đth AH