K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

15 tháng 2 2020

có thể giúp mk trả lời phần a ko ạ

17 tháng 12 2023

a: Xét ΔABC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình của ΔABC

=>EF//AC và \(EF=\dfrac{AC}{2}\)

Xét ΔCDA có

G,H lần lượt là trung điểm của CD,DA

=>GH là đường trung bình của ΔCDA

=>GH//AC và \(GH=\dfrac{AC}{2}\)

Ta có: EF//AC

GH//AC

Do đó: EF//GH

Ta có: \(EF=\dfrac{AC}{2}\)

\(GH=\dfrac{AC}{2}\)

Do đó: EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

b: Xét ΔBAD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔBAD

=>\(EH=\dfrac{BD}{2}\)

mà BD=AC

và EF=AC/2

nên EH=EF

Hình bình hành EFGH có EF=EH

nên EFGH là hình thoi

=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)

19 tháng 7 2018

Bạn tự vẽ hình nhé.

a) Ta có: EF, FG; GN; NE lần lượt là đường trung bình của \(\Delta ABC;\Delta BCD;\Delta CDA;\Delta DAB\)

\(\Rightarrow\hept{\begin{cases}EF=\frac{1}{2}AB;EF//AC\\GN=\frac{1}{2}AB;GN//AC\\FC//BC\end{cases}}\Rightarrow AC\perp BD\)

\(\Rightarrow\hept{\begin{cases}EFGH\text{ là HBH}\\AC\perp BD\\FG//BD;EF//AC\end{cases}}\Rightarrow EF\perp FG\)

=> EFGH là HCN

b) Dựa câu a) để làm nhé

9 tháng 7 2018

a) Ta có EFGH là hình chữ nhật (Tứ giác có 3 góc vuông)

b)   S A B C D = 1 2 A C . B D = 30 c m 2

c) SEFGH = EF.FG = 15cm2

24 tháng 8 2019

Để học tốt Toán 8 | Giải toán lớp 8

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

11 tháng 5 2017

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối đường chéo AC.

Trong ∆ ABC ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒EF//AC và EF = 1/2 AC

(tính chất đường trung hình tam giác) (1)

Trong  ∆ ADC ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của ADC

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).